
acmqueue | september-october 1

research for practiceRFP

W
hen deploying applications in the cloud,
practitioners seek to use the most operable
set of tools for the job; determining the “right”
tool is, of course, nontrivial. Back in 2013,
Docker won the hearts of developers by being

easy to use, but Linux containers themselves have been
around since 2007, when cgroups (control groups) were
added to the kernel. Today, containers have spawned a
large ecosystem of new tools and practices that many
professionals are using on a daily basis. The foundational
technologies making up containers are not new, however.
Unlike Solaris Zones or FreeBSD Jails, Linux containers are
not discrete kernel components built with isolation in mind.
Rather, Linux containers are a combination of technologies
in the kernel: namespaces, cgroups, AppArmor, and SELinux
(Security-Enhanced Linux), to name a few.

Containers are not the abstraction an application
developer typically encounters today. The trend is toward
functions and “serverless,” allowing the user to run a single
function in the cloud. Because of the way applications and
functions are run in the cloud, there will likely be a new
generation of isolation techniques built around running a

Securely
running
processes that
require the
entire syscall
interface

JESSIE FRAZELLE

1 of 9
TEXT
ONLY

Security for the
Modern Age

RFP

Research for Practice
combines the resources

of the ACM Digital
Library, the largest

collection of computer
science research in
the world, with the

expertise of the ACM
membership. In every

RfP column experts
share a short curated

selection of papers on a
concentrated, practically

oriented topic.

acmqueue | september-october 2

research for practiceRFP

single process securely in an easy and minimal way.
While evidence has shown that “a container with

a well-crafted seccomp (secure computing mode)
profile (which blocks unexpected system calls) provides
roughly equivalent security to a hypervisor” (https://blog.
hansenpartnership.com/measuring-the-horizontal-attack-
profile-of-nabla-containers/), methods are still needed for
securely running those processes that require the entire
syscall interface. Solving this problem has led to some
interesting research.

Let’s take a look at some of the research being done in
these areas.

VIRTUAL MACHINES VERSUS CONTAINERS
My VM is Lighter (and Safer) Than Your Container;
Filipe Manco et al.
https://dl.acm.org/citation.cfm?id=3132763

C
ontainers became popular as an alternative to
VMs (virtual machines) because they are better in
the areas of fast boot, small memory overhead,
and allowing high density on a single machine. This
paper explores creating VMs that meet those

same requirements, along with the container features of
pause and unpause.

Taking into consideration that the required functionality
for most containers is a single application, the authors
explored unikernels (minimal VMs where the operating
system is linked directly to the application) and TinyX (a tool
to create minimal Linux distributions for an application). The

2 of 9

https://blog.hansenpartnership.com/measuring-the-horizontal-attack-profile-of-nabla-containers/
https://blog.hansenpartnership.com/measuring-the-horizontal-attack-profile-of-nabla-containers/
https://blog.hansenpartnership.com/measuring-the-horizontal-attack-profile-of-nabla-containers/
https://dl.acm.org/citation.cfm?id=3132763

acmqueue | september-october 3

research for practiceRFP

smaller the VM image is, the smaller the memory footprint
will be and the faster the image will boot.

For containers, just like a typical process running on a
host, the number of processes or containers you start does
not affect the time to start them, given the usual caveats
about resources not being infinite, even in the cloud. This
is not true for VMs. The overhead to start a VM increases
as more of them are run. The authors found, in the case of
Xen, that this is a result of both device-creation time and
interactions with the XenStore. The authors implemented
their own LightVM to solve a lot of the algorithmic and
design problems they found with Xen.

The result of their efforts are minimal VMs that can be
booted in as little as 2.3 ms. A standard Linux process starts
in about 1 ms, and a docker container starts in about 40 ms,
depending on the size of the image. The boot time remains
constant the more VMs are launched, which is in stark
contrast to typical VMs. Unikernels, however, are not as easy
to create as containers and require individual development
time to be made functional for each application.

ISOLATION OF APPLICATIONS IN A MINIMAL WAY
Unikernel Monitors: Extending Minimalism Outside
of the Box; Dan Williams and Ricardo Koller
https://dl.acm.org/citation.cfm?id=3027053

M
inimal software has the benefits of reducing
attack surface and making software more
understandable with less overhead. Unikernels
are frequently discussed in the context of
minimal and secure ways to run programs in

3 of 9

https://dl.acm.org/citation.cfm?id=3027053

acmqueue | september-october 4

research for practiceRFP

the cloud. In the traditional approach a unikernel is a VM
and, as such, is run in a VM monitor, which is a program
that watches and controls the lifecycle of VMs, such as
VMWare, QEMU, or VirtualBox. Unikernel monitors are
bundled into the unikernel. This creates a minimal way to
boot unikernels without the added complexity of using a
stand-alone VM monitor.

Most VM managers/monitors are heavyweight, with
features for devices that are not used in modern or cloud
environments. Take QEMU, for example: it comes with the
emulation for devices such as keyboards and floppy drives.
If there is an exploit in the floppy-drive emulator, it is game
over for the whole system, even though a floppy drive
obviously has no usefulness in the cloud.

If a monitor is purpose-built for booting unikernels,
its computing base is much more minimal than the VM
monitors in use today (about five percent of the size). The
authors of this paper created a monitor that has only
two jobs: creating the isolation to run the unikernel and
performing actions when the unikernel exits. The monitor
is also baked into the executable for the unikernel, creating
a simplistic and minimal approach for distributing and
executing unikernels.

The boot time for their prototype was 10 ms, which is
eight times faster than a traditional monitor. This paper
has a positive vision of the future, running applications in a
minimal and secure way in the cloud. IBM recently released
a container runtime called Nabla (https://nabla-containers.
github.io/) around the topics and implementations of this
paper.

4 of 9

https://nabla-containers.github.io/
https://nabla-containers.github.io/

acmqueue | september-october 5

research for practiceRFP

VIRTUALIZE AT THE RUNTIME LAYER
Alto: Lightweight VMs using Virtualization-Aware Managed
Runtimes; James Larisch, James Mickens, and Eddie Kohler
https://mickens.seas.harvard.edu/files/mickens/files/alto.pdf

T
raditional virtual machines, like Xen, virtualize at
the hardware layer. Docker, on the other hand,
virtualizes at the POSIX layer. This paper suggests
a new approach to virtualize at the runtime layer.

One of the harder questions in this space is
how to handle state. In traditional environments, state for
the file system and network is handled in the kernel. The
authors suggest moving as much kernel state as possible
into the virtual machine through a user-space networking
stack and FUSE filesystem. They also suggest explicitly
depicting each state object as an addressable server
(each with its own IP address), allowing operators to
easily migrate and update applications since there is clean
separation of a program’s code, stack, and heap.

Through innovations in memory allocation, garbage
collection, and managing state, Alto seems to be the
closest solution to securing processes minimally while
giving a new set of controls to operators. As someone who
has spent quite a bit of time thinking about the problems
faced by creating a minimal, virtualized container runtime,
I truly enjoyed the problem statements and solutions this
paper laid out.

DETERRING ATTACKERS IN YOUR APPLICATION
Chaff Bugs: Deterring Attackers by Making Software

5 of 9

acmqueue | september-october 6

research for practiceRFP

Buggier; Zhenghao Hu, Yu Hu, and Brendan Dolan-Gavitt
https://arxiv.org/abs/1808.00659

D
efense of software and systems usually consists
of correcting bugs that can be exploitable and
building software with more than one layer of
security, meaning that even if attackers penetrate
one layer of the system, they must also penetrate

another layer to discover anything of value. Static analysis
of code helps automate some of this today but is still not a
guarantee of software security.

People tend not to take “security through obscurity”
seriously, but there is some value to the technique. Address
space layout randomization is an example of this approach.
It comes at a performance cost, however.

This paper describes a new approach to slowing down
attackers trying to exploit your system. Because this
approach automatically injects nonexploitable bugs into
software, an attacker who finds said bugs will waste
precious time triaging the bug in order to use it maliciously
and will fail. In some cases the bugs injected will cause
the program to crash, but in modern distributed systems
this is unlikely to be an issue because many programs use
process pools, and high-availability systems, like those that
use containers, typically have a policy for automatically
restarting the program on crash.

The bugs injected come in two forms: those that
overwrite unused data, and those that overwrite sensitive
data with nonexploitable values. The former is fairly
straightforward: inject unused variables into the code and
ensure the dummy variable is placed directly adjacent

6 of 9

https://arxiv.org/search/cs?searchtype=author&query=Hu%2C+Z
https://arxiv.org/search/cs?searchtype=author&query=Hu%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Dolan-Gavitt%2C+B
https://arxiv.org/abs/1808.00659

acmqueue | september-october 7

research for practiceRFP

to the variable that will be overflowed. In the latter
case of overwriting sensitive data, the attacker’s input
value is overconstrained, meaning it has a defined set of
constraints that are by design forced eventually to be zero,
through bitmasks and controlling the pathway that the
data is passed through.

The key insight in this paper is that instead of trying to
decrease the number of bugs in your program, you could
increase them but make them nonexploitable, thereby
deterring attackers by wasting their time. There is still a
performance overhead brought on by the overconstrained
checking of inputs, and it is an open question whether the
attackers could find patterns in the injected bugs to rule
them out automatically. This was, however, enough to fool
tools such as gdb, which considered the bugs “exploitable”
and “probably exploitable.” Could future versions of this
approach be designed differently to be more useful to
open-source projects? Having the source code would
surely give attackers an advantage in discovering which
bugs were real and which were injected.

THE FUTURE OF SECURING APPLICATIONS
IN A USABLE WAY
The container ecosystem is very fast paced. Numerous
companies are building products on top of existing
technologies, while enterprises are using these
technologies and products to run their infrastructures.
The focus of the three papers described here is on
advancements to the underlying technologies themselves
and strategic ways to secure software in the modern age.

The first paper rethinks VMs in modern environments

7 of 9

acmqueue | september-october 8

research for practiceRFP

purely as mechanisms for running applications. This allows
for the creation of minimal VMs that can behave just like
containers in terms of memory overhead, density, and
boot time. The second paper takes this a bit further by
packaging the monitor in the unikernel. This is an extremely
usable way to execute unikernels since the operator does
not have to install a VM manager. It also allows for a more
minimal monitor, limiting the attack surface. IBM’s recently
launched Nabla container runtime is an example of those
approaches. Both papers leverage unikernels and have
an open question as to whether unikernels can eventually
be as easy to build as containers are today. This will be a
hurdle for those implementations to overcome.

The third paper suggests a whole new approach which
also gives operators a new set of controls for managing
state. Through isolation at the address space and tying
each piece of state to an IP address, operators gain clear
controls over a program’s code, stack, and heap. Alto not
only innovated as far as isolation techniques but also in
terms of operability and control.

This should push forward methods for easily debugging
the applications running in minimal VMs. Until these
applications can be debugged as easily as standard Linux
containers, adoption by most practitioners will be slow, as
the learning curve is higher.

Finally, isolation is not the only way to secure
applications. The last paper could inspire others to devise
new methods of automating ways to deter attackers.

Giving operators a usable means of securing the
methods they use to deploy and run applications is a win
for everyone. Keeping the usability-focused abstractions

8 of 9

acmqueue | september-october 9

research for practiceRFP

provided by containers, while finding new ways to
automate security and defend against attacks, is a great
path forward.

Jessie Frazelle works for Microsoft in the cloud organization.
She was a maintainer of Docker and has been a core
contributor to many different open-source projects in the
container ecosystem and outside of it. She has a strong love
of usable, uncomplex interfaces, performance, and security,
specifically technologies around isolation.
Copyright © 2018 held by owner/author. Publication rights licensed to ACM.

9 of 9

