
acmqueue | november-december 2019 1

T
he boot sequence for a machine typically starts
with the BMC (baseboard management controller)
or PCH (platform controller hub). In the case of an
Intel CPU, the Intel Management Engine runs in the
PCH and starts before the CPU. After configuring

the machine’s hardware, the BMC (or PCH, depending
on the system) allows the CPU to come out of reset.
The CPU then loads the boot firmware (or UEFI, unified
extensible firmware interface) from the boot firmware
SPI (Serial Peripheral Interface) flash. The boot firmware
then accesses the boot sector on the machine’s persistent
storage and loads the bootloader into the system memory.
It then passes execution control to the bootloader, which
loads the initial operating system image from storage
into system memory and passes execution control to the
operating system. For example, in popular Linux distros,
GRUB (Grand Unified Bootloader) acts as the bootloader
and loads the operating system image for the machine.

This is much like a relay race where one team member
passes a baton to another to win the race. In a relay race,
you hopefully know the members of your team and trust
them to do their part for the team to get to the finish
line. With machines, trust is a bit more complex. How can
you verify that each step in the boot sequence is running
software that you know is secure? If our hardware or
software has been compromised at any point in the boot

Securing the Boot Process
The hardware
root of trust

JESSIE FRAZELLE

1 of 17 TEXT
ONLY COMMIT TO

memory

acmqueue | november-december 2019 2

sequence then the attacker has the most privilege on our
system and likely can do anything they want.

The goal of a hardware root of trust is to verify that the
software installed in every component of the hardware
is the software that was intended. This way you can
verify and know without a doubt whether a machine’s
hardware or software has been hacked or overwritten
by an adversary. In a world of modchips16, supply chain
attacks, evil maid attacks7, cloud provider vulnerabilities
in hardware components2, and other attack vectors it has
become more and more necessary to ensure hardware and
software integrity.

This article is an introduction to a complicated topic;
some sections just touch the surface, but the intention
is to provide a full picture of the world of secure booting
mechanisms.

TRUSTED PLATFORM MODULE
A TPM (trusted platform module) is a standard for a
dedicated microchip designed to secure hardware through
integrated cryptographic keys. TPM was standardized by
the ISO (International Organization for Standardization)
and the IEC (International Electrotechnical Commission)
in 2009 as ISO/IEC 11889.9 The TPM is typically installed on
the motherboard of a computer, and it communicates with
the remainder of the system using a hardware bus.

A TPM has the following features:18

3 A random number generator
3 A way to generate cryptographic keys
3 Integrity measurement

2 of 17

ICOMMIT TO
memory

acmqueue | november-december 2019 3

3 Attestation
3 Wrapping/binding keys
3 Sealing/unsealing keys

Integrity measurement
Measurement is the process through which information
about the software, hardware, and configuration of a
system is collected and digested. At load time, the TPM
uses a hash function to fingerprint an executable and its
configuration. These hash values are used in attestation to
reliably establish code identity to remote or local verifiers.
The hash values can also be used in conjunction with the
sealed storage feature. A secret can be sealed along with a
list of hash values of programs that are allowed to unseal
the secret. This allows the creation of data files that can
be opened only by specific applications.

Attestation
Attestation reports the state of the hardware and
software configuration. The integrity measurement
software in charge of creating the hash key used for
the configuration data determines the extent of the
summary. The goal of attestation is to prove to a third
party that your operating system and application software
are intact and trustworthy. The verifier trusts that
attestation data is accurate because it is signed by a TPM
whose key is certified by the certificate authority (CA).
TPMs are manufactured with a public/private key pair
built into the hardware, known as the endorsement key.
The endorsement key is unique to a specific TPM and is

3 of 17

ICOMMIT TO
memory

acmqueue | november-december 2019 4

signed by a trusted CA. The trust for attestation data is
dependent on the trust for the CA that originally signed
the endorsement key.

Attestation can reliably tell a verifier which applications
are running on a client machine, but the verifier must still
make the judgment about whether each given piece of
software is trustworthy.

Wrapping/binding a key
A machine that uses a TPM can create cryptographic keys
and encrypt them so that they can be decrypted only by
the TPM. This process, known as wrapping or binding a key,
can help protect the key from disclosure. Each TPM has
a master wrapping key, also known as the storage root
key, which is stored within the TPM. The private portion
of a storage root key or endorsement key that is created
in a TPM is never exposed to any other device, process,
application, software, or user.

Sealing/unsealing a key
A machine that uses a TPM can also create a key that has
not only been wrapped, but is also tied to certain platform
measurements. This type of key can be unwrapped only
when those platform measurements have the same values
that they had when the key was created. This process is
known as sealing the key to the TPM. Decrypting the key
is called unsealing. The TPM can also seal and unseal data
that is generated outside the TPM. With this sealed key
and software you can lock data until specific hardware or
software conditions are met.

4 of 17

I

W
hen
boot-
ing a
machine
secure-

ly, you want the
first instruction
run on that
machine to be
the one you
would expect
to run.

COMMIT TO
memory

acmqueue | november-december 2019 5

I

CUSTOM SILICON
It is important to note the limitations of TPMs and
provide some solutions to those. TPMs can attest that
the firmware running on a machine is the firmware the
user wants to run, but there is no mechanism in a TPM
for verifying that the code is secure. It is up to the user to
verify the security of the firmware and to ensure it does
not contain any backdoors, which is impossible if the code
is proprietary.

When booting a machine securely, you want the first
instruction run on that machine to be the one you would
expect to run. A TPM is insufficient for verifying that the
actual bits of code to be executed are secure, so a few
companies have created their own silicon for expanding on
the security of TPMs.

Google’s Titan
For Google’s infrastructure, as well as Chromebooks,
Google expanded on the security of the TPM with its own
chip, Titan. Google open sourced5 a version of Titan9 (with
both specs and code), which is under active development,
in October 2019. In creating Titan, Google added two
new features that did not exist in TPMs: first-instruction
integrity and remediation.

First-instruction integrity
First-instruction integrity allows verification of the
earliest code that runs on each machine’s startup cycle.
Titan observes every byte of boot firmware by interposing
itself between the boot firmware flash (BIOS) of the BMC
(or PCH) and the main CPU via the SPI bus. Therefore, the

5 of 17COMMIT TO
memory

acmqueue | november-december 2019 6

boot sequence for a machine with a Titan chip is different
from a normal boot sequence.

The boot sequence with Titan is as follows:
1. Titan holds the machine in reset.
2. �Titan’s application processor executes code from its

embedded read-only memory (boot ROM).
3. �Titan runs a memory built-in self-test to ensure that all

memory (including ROM) has not been tampered with.
4. �Titan verifies its own firmware using public-key

cryptography, and mixes the identity of this verified code
into Titan’s key hierarchy.

5. �Titan loads the verified firmware.
6. Titan verifies the host’s boot firmware flash (BIOS/UEFI).
7. � �Titan signals readiness to release the rest of the

machine from reset.
8. �The CPU loads the basic firmware (BIOS/UEFI) from the

boot firmware flash, which performs further hardware/
software configuration.

9. The rest of the standard boot sequence continues.

Holding the machine in reset while Titan
cryptographically verifies the boot firmware, Titan enables
the verification of the first instruction. Titan knows what
boot firmware and operating system booted on your
machine from the very first instruction. In fact, you even
know which microcode patches may have been fetched
before the boot firmware’s first instruction.

Remediation
What happens when we need to patch bugs in Titan’s
firmware? This is where remediation comes into play. In the

6 of 17

ICOMMIT TO
memory

acmqueue | november-december 2019 7

event of patching bugs in the Titan firmware, trust can be
reestablished through remediation. Remediation is based
on a strong cryptographic identity. To provide a strong
identity, the Titan chip manufacturing process generates
unique keying material for each chip. The Titan-based
identity system verifies not only the provenance of the
chips creating the CSRs (certificate signing requests), but
also the firmware running on the chips, as the code identity
of the firmware is hashed into the on-chip key hierarchy.
This property allows Google to fix bugs in Titan firmware
and issue certificates that can be wielded only by patched
Titan chips.

The Titan-based identity system enables back-end
systems to securely provision secrets and keys to
individual Titan-enabled machines or jobs running on those
machines. Titan is also able to chain and sign critical audit
logs, making those logs tamper-evident. This ensures that
audit logs cannot be altered or deleted without detection,
even by insiders with root access to the relevant machine.

Microsoft’s Cerberus
Microsoft open sourced11 the specs for its chip, Cerberus11
(at the time of writing this article, only the specs have
been open sourced). Like Titan, Cerberus interposes on
the SPI bus where firmware is stored for the CPU. This
allows Cerberus to continuously measure and attest these
accesses to ensure firmware integrity and thereby protect
against unauthorized access and malicious updates.

Apple’s T2
Apple is a poster child for secure booting devices. Most

7 of 17

ICOMMIT TO
memory

acmqueue | november-december 2019 8

people remember when the FBI wanted a backdoor into
iPhones and Tim Cook refused.5 Between Macs, iPhones,
and Chromebooks, an industry standard for products
includes security by default.

For Apple machines, secure boot is done with Apple’s
T2 chip.1 Ivan Krstic of Apple gave a talk at Black Hat 201912
detailing the boot process for a Mac with Apple’s T2 chip.

Apple’s requirements for T2 were:
3 Signature verification of the complete boot chain.
3 �System software authorization (server-side downgrade

protection).
3 �Authorization “personalized” for the requesting device

(not portable).
3 �User authentication required to downgrade secure boot

policy.
3 Secure boot policy protected against physical tampering.
3 System can always be restored to a known-good state.

The boot sequence for a machine using a T2 chip is as
follows:
3 The machine is powered on.
3 T2 ROM is loaded and executed.
3 T2 ROM passes off to iBoot, the bootloader.
3 �The bootloader executes the bridgeOS kernel, the kernel

for the T2 chip.
3 �The bridgeOS kernel passes off to the UEFI firmware for

the T2 chip.
3 �The T2 chip then allows the CPU out of reset and loads

the UEFI firmware for the CPU.
3 �The UEFI firmware for the CPU then loads macOS

booter.

8 of 17

ICOMMIT TO
memory

acmqueue | november-december 2019 9

3 �The macOS booter then executes the macOS kernel.

One important design element of the T2 chip is how
Apple verifies the version of MacOS running on a computer.
T2 verifies the hash of MacOS against a list of approved
hashes for running. Apple is in a unique position to have this
level of verification since they own the entire stack and
prevent users from running any other OS on their devices.
If you would like to go deeper into the internals of the T2
chip, read the slides for Ivan Krstic’s Black Hat talk.12

PLATFORM FIRMWARE RESILIENCY
Chip vendors are investing in PFR (platform firmware
resiliency) based on NIST (National Institute of Standards
and Technology) guidelines.15 These guidelines focus on
ensuring the firmware remains in a state of integrity,
detecting when it has been corrupted, and recovering the
pieces of firmware back to a state of integrity.

PFR addresses the vulnerability of enterprise servers
that contain multiple processing components, each
having its own firmware. This firmware can be attacked
by hackers who may surreptitiously install malicious code
in a component’s flash memory that hides from standard
system-level detection methods and leaves the system
permanently compromised.

The PFR specification is based on the following principles:
3 Protection, ensuring that firmware code and critical
data remain in a state of integrity and are protected
from corruption, such as the process for ensuring the
authenticity and integrity of firmware updates.
3 Detection, detecting when firmware code and critical

I
9 of 17COMMIT TO

memory

acmqueue | november-december 2019 10

data have been corrupted.
3 Recovery, restoring firmware code and critical data to a
state of integrity in the event that any such firmware code
or critical data are detected to have been corrupted, or
when forced to recover through an authorized mechanism.
Vendors have been building features around the NIST
guidelines for PFR. Intel8 and Lattice Semiconductors13
each has such a product.

UEFI SECURE BOOT
UEFI Secure Boot21 is designed to ensure that EFI binaries
that are executed during boot are verified, either through
a checksum or a valid signature, backed by a locally
trusted certificate. When a machine using UEFI Secure
Boot powers on, the UEFI firmware validates that each EFI
binary either has a valid signature or the binary’s checksum
is present on an allowed list. Counter to the allow list
is a deny list that is also checked to ensure no binary’s
checksum or signature exists on it. Users can configure the
list of trusted certificates and checksums as EFI variables.
These variables get stored in non-volatile memory used
by the UEFI firmware environment to store settings and
configuration data.

The UEFI kernel is extremely complex and has
millions of lines of code. It consists of boot services and
runtime services. The specification19 is quite verbose and
complex. The UEFI kernel is a common vector for many
vulnerabilities since it has some of the same proprietary
code used on many different platforms. The UEFI kernel
is shared on multiple platforms, making it a great target
for attackers. Additionally, since only UEFI can rewrite

I
10 of 17COMMIT TO

memory

acmqueue | november-december 2019 11

itself, exploits can be made persistent. This is because UEFI
lives in the processor’s firmware, typically stored in the
SPI flash. Even if a user were to wipe the entire operating
system or install a new hard drive, an attack would persist
in the SPI flash.

INTEL’S BOOT GUARD
Boot Guard is Intel’s solution to verify the firmware
signatures for the processor. Boot Guard works by
flashing the public key of the BIOS signature into the field
programmable fuses (FPFs), a one-time programmable
memory inside Intel Management Engine (ME), during the
manufacturing process. The machine then has the public
key of the BIOS and it can verify the correct signature
during every subsequent boot. However, once Boot Guard
is enabled by the manufacturer, it cannot be disabled.

The problem with Boot Guard is that only Intel or the
manufacturer has the keys for signing firmware packages.
This makes it impossible to use coreboot, LinuxBoot, or any
other equivalents as firmware on those processors. If you
tried, the firmware would not be signed with the correct
key, and the failed attempt to boot would brick the board.

Matthew Garrett wrote a great post about Boot Guard
that highlights the importance of user freedom when it
comes to firmware4. The owner of the hardware has a right
to own the firmware as well. Boot Guard prevents this. In
the security keynote at the 2018 Open Source Firmware
Conference6, Trammel Hudson described how he found a
vulnerability to bypass Boot Guard, CVE-2018-121693. The
bug20 allows an attacker to use unsigned firmware and
boot normally, completely negating the purpose of Boot

I
11 of 17COMMIT TO

memory

acmqueue | november-december 2019 12

Guard. Because Boot Guard is tied to the CPU, it does not
have the control that a custom silicon hardware root of
trust has when it comes to other firmware for components
in the system.

SYSTEM TRANSPARENCY
The Mullvad virtual private network service published a
paper on what it calls system transparency,17 which is aimed
at facilitating trust for the components of a system by giving
every server a unique identity, limiting the attack surface
and mutable state in the firmware and allowing both owners
and users to verify all software running on a platform
starting from the first instruction executed after power on.

ST accomplishes these goals by following seven
principles:
1. Identity binding. A key ceremony of each server to
bind the server’s unique identity with a difficult to forge
physical artifact like a video.
2. Physical write-protection of the firmware. Writable
code sections are a mutable state, so System Transparency
limits the possible changes to this critical piece of code.
Read-only code also serves as a root of trust for all other
software-enforced security mechanisms.
3. Tamper detection. Attackers cannot be stopped from
changing the content of the firmware flash by replacing
the actual chip. So, violations of the physical integrity of
the server hardware need to be detectable.
4. Measured boot. System Transparency has the goal to
give all parties insight into what code was run as part of
the system boot. A measured boot in combination with
remote attestation allows third parties to acquire a

I
12 of 17COMMIT TO

memory

acmqueue | november-december 2019 13

cryptographic log of the boot.
5. Reproducible builds. Ensures that if a binary artifact is
built once, it can be built again and again and produce the
same artifact. This establishes a verifiable link between
the human-readable code and the binary that was attested
using the measured boot mechanism.
6. Immutable infrastructure. System transparency only
works when changes to the operating system are limited.
Allowing somebody to log into the system and make
arbitrary changes invalidates all guarantees of a measured
boot.
7. Binary transparency log. All firmware and OS images
that can be booted on a system are signed by the system’s

owner and are inserted into a
public, append-only log. Users
of the system can monitor this
log for new entries and catch
malicious system owners booting
backdoored firmware on new
servers.

THE IMPORTANCE OF OPEN
SOURCE FIRMWARE
Securing the boot process
with a hardware root of trust
has various implementations
throughout the industry. Without
open source firmware, the
proprietary bits of the boot
process still lack the visibility
and auditability to ensure

13 of 17

Related articles

3 Security for the Modern Age
Securely running processes that require
the entire syscall interface
Jessie Frazelle
https://queue.acm.org/detail.cfm?id=3301253

3 Simulators: Virtual Machines
of the Past (and Future)
Has the time come to kiss
that old iron goodbye?
Bob Supnik
https://queue.acm.org/detail.cfm?id=1017002

3 Automating Software Failure Reporting
We can only fix those bugs we know about.
Brendan Murphy
https://queue.acm.org/detail.cfm?id=1036498

ICOMMIT TO
memory

acmqueue | november-december 2019 14

that software is secure. Even if you can verify through
a hardware root of trust that the hash of proprietary
firmware is the hash known to be true, you need visibility
into the firmware’s source code for assurance it does not
contain any backdoors. Through this visibility you can also
gain ease of use in debugging and fixing problems without
relying on a vendor.

Firmware is scattered throughout motherboards of
machines and their components; it is in the CPU (central
processing unit), NIC (network interface controller), SSD
(solid-state drive), HDD (hard-disk drive), GPU (graphics
processing unit), fans, and more. To ensure the integrity of
a machine, all these components must be verified. In the
future, these custom silicon chips will interpose not only on
the SPI flash but also on every other device communicating
with the BMC.

If you would like to help with the open source firmware
movement, push back on your vendors and the platforms
you are using to make their firmware open source.

Acknowledgments
Thank you to Ivan Krstic, Matthew Garrett, Kai Michaelis,
Fredrik Strömberg, and Trammell Hudson for all their
research and work in this area, which helped me write this
article.

References
1. �Apple. 2018. Apple T2 Security Chip; https://www.apple.

com/mac/docs/Apple_T2_Security_Chip_Overview.pdf
2. �Cimpanu, C. Hackers can hijack bare-metal cloud

servers by corrupting their BMC firmware; https://

14 of 17

ICOMMIT TO
memory

https://www.apple.com/mac/docs/Apple_T2_Security_Chip_Overview.pdf
https://www.apple.com/mac/docs/Apple_T2_Security_Chip_Overview.pdf
https://www.zdnet.com/article/hackers-can-hijack-bare-metal-cloud-servers-by-corrupting-their-bmc-firmware/

acmqueue | november-december 2019 15

www.zdnet.com/article/hackers-can-hijack-bare-metal-
cloud-servers-by-corrupting-their-bmc-firmware/

3. �Common Vulnerabilities and Exposures.
2018; https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2018-12169

4. �Garrett, M. 2015. Intel Boot Guard, Coreboot and user
freedom; https://mjg59.dreamwidth.org/33981.html

5. �Google Open Source Blog. 2019. OpenTitan—open
sourcing transparent, trustworthy, and secure silicon;
https://opensource.googleblog.com/2019/11/opentitan-
open-sourcing-transparent.html.

6. �Hudson, T. 2018. Open Source Firmware Conference’s
Security Keynote; https://trmm.net/OSFC_2018_
Security_keynote#Boot_Guard

7. �Hudson, T. Thunderstrike EFI bootkit FAQ; https://trmm.
net/Thunderstrike_FAQ#Does_anyone_actually_use_
evil-maid_attacks.3F

8. �Intel. 2017. Intel Data Center Block with Firmware
Resilience; https://www.intel.com/content/dam/www/
public/us/en/documents/solution-briefs/firmware-
resilience-blocks-solution-brief.pdf.

9. �ISO/IEC 11889-1:2009. Information technology—trusted
platform module; https://www.iso.org/standard/50970.
html.

10. �Kahney, L. 2019. The FBI wanted a back door to the
iPhone. Tim Cook said no. Wired (April 16); https://www.
wired.com/story/the-time-tim-cook-stood-his-ground-
against-fbi/.

11. �Kelly, B. 2017. Open Compute Project—Project Cerberus
Security Architecture Overview Specification; https://
github.com/opencomputeproject/Project_Olympus/

15 of 17

ICOMMIT TO
memory

https://www.zdnet.com/article/hackers-can-hijack-bare-metal-cloud-servers-by-corrupting-their-bmc-firmware/
https://www.zdnet.com/article/hackers-can-hijack-bare-metal-cloud-servers-by-corrupting-their-bmc-firmware/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-12169
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-12169
https://mjg59.dreamwidth.org/33981.html
https://opensource.googleblog.com/2019/11/opentitan-open-sourcing-transparent.html
https://opensource.googleblog.com/2019/11/opentitan-open-sourcing-transparent.html
https://trmm.net/OSFC_2018_Security_keynote#Boot_Guard
https://trmm.net/OSFC_2018_Security_keynote#Boot_Guard
https://trmm.net/Thunderstrike_FAQ#Does_anyone_actually_use_evil-maid_attacks.3F
https://trmm.net/Thunderstrike_FAQ#Does_anyone_actually_use_evil-maid_attacks.3F
https://trmm.net/Thunderstrike_FAQ#Does_anyone_actually_use_evil-maid_attacks.3F
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/firmware-resilience-blocks-solution-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/firmware-resilience-blocks-solution-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/firmware-resilience-blocks-solution-brief.pdf
https://www.iso.org/standard/50970.html
https://www.iso.org/standard/50970.html
https://www.wired.com/story/the-time-tim-cook-stood-his-ground-against-fbi/
https://www.wired.com/story/the-time-tim-cook-stood-his-ground-against-fbi/
https://www.wired.com/story/the-time-tim-cook-stood-his-ground-against-fbi/
https://github.com/opencomputeproject/Project_Olympus/blob/master/Project_Cerberus/Project%20
https://github.com/opencomputeproject/Project_Olympus/blob/master/Project_Cerberus/Project%20

acmqueue | november-december 2019 16

blob/master/Project_Cerberus/Project%20
Cerberus%20Architecture%20Overview.pdf.

12. �Krstic, I. 2019. Behind the scenes of iOS and Mac security;
https://i.blackhat.com/USA-19/Thursday/us-19-Krstic-
Behind-The-Scenes-Of-IOS-And-Mas-Security.pdf.

13. �Lattice Semiconductors. Universal Platform Firmware
Resiliency (PFR)—Servers; http://www.latticesemi.com/
Solutions/Solutions/SolutionsDetails02/PFR.

14. �OpenTitan. 2019. Introduction to OpenTitan; https://
docs.opentitan.org/.

15. �Regenscheid, A. 2018. Platform firmware resiliency
guidelines. NIST Special Publication 800-193; https://
nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.
SP.800-193.pdf.

16. �Robertson, J., Riley, M. 2018. The Big Hack: How China
Used a Tiny Chip to Infiltrate U.S. Companies; https://
www.bloomberg.com/news/features/2018-10-04/
the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-
america-s-top-companies

17. �Strömberg, F. 2019. System transparency; https://
mullvad.net/media/system-transparency-rev5.pdf.

18. �Trusted Computing Group. 2011. TPM main, part 1,
design principles; https://trustedcomputinggroup.
org/wp-content/uploads/TPM-Main-Part-1-Design-
Principles_v1.2_rev116_01032011.pdf.

19. �UEFI. https://uefi.org/specifications
20. �Wang, Jian. 2019. Bug 1614 (CVE-2019-11098) -

BootGuard TOCTOU vulnerability; https://bugzilla.
tianocore.org/show_bug.cgi?id=1614

21. �Wilkins, R. 2013. UEFI SECURE BOOT IN MODERN
COMPUTER SECURITY SOLUTIONS ; https://uefi.org/

16 of 17

ICOMMIT TO
memory

https://github.com/opencomputeproject/Project_Olympus/blob/master/Project_Cerberus/Project%20
https://i.blackhat.com/USA-19/Thursday/us-19-Krstic-Behind-The-Scenes-Of-IOS-And-Mas-Security.pdf
https://i.blackhat.com/USA-19/Thursday/us-19-Krstic-Behind-The-Scenes-Of-IOS-And-Mas-Security.pdf
http://www.latticesemi.com/Solutions/Solutions/SolutionsDetails02/PFR
http://www.latticesemi.com/Solutions/Solutions/SolutionsDetails02/PFR
https://docs.opentitan.org/
https://docs.opentitan.org/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://mullvad.net/media/system-transparency-rev5.pdf
https://mullvad.net/media/system-transparency-rev5.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://uefi.org/specifications
https://bugzilla.tianocore.org/show_bug.cgi?id=1614
https://bugzilla.tianocore.org/show_bug.cgi?id=1614
https://uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf

acmqueue | november-december 2019 17

sites/default/files/resources/UEFI_Secure_Boot_in_
Modern_Computer_Security_Solutions_2013.pdf

Jessie Frazelle is the co-founder and Chief Product Officer
of the Oxide Computer Company. Before that, she worked on
various parts of Linux including containers and also the Go
programming language.
Copyright © 2019 held by owner/author. Publication rights licensed to ACM.

17 of 17

ICOMMIT TO
memory

https://uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf
https://uefi.org/sites/default/files/resources/UEFI_Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf

