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T
he boot sequence for a machine typically starts 
with the BMC (baseboard management controller) 
or PCH (platform controller hub). In the case of an 
Intel CPU, the Intel Management Engine runs in the 
PCH and starts before the CPU. After configuring 

the machine’s hardware, the BMC (or PCH, depending 
on the system) allows the CPU to come out of reset. 
The CPU then loads the boot firmware (or UEFI, unified 
extensible firmware interface) from the boot firmware 
SPI (Serial Peripheral Interface) flash. The boot firmware 
then accesses the boot sector on the machine’s persistent 
storage and loads the bootloader into the system memory. 
It then passes execution control to the bootloader, which 
loads the initial operating system image from storage 
into system memory and passes execution control to the 
operating system. For example, in popular Linux distros, 
GRUB (Grand Unified Bootloader) acts as the bootloader 
and loads the operating system image for the machine.

This is much like a relay race where one team member 
passes a baton to another to win the race. In a relay race, 
you hopefully know the members of your team and trust 
them to do their part for the team to get to the finish 
line. With machines, trust is a bit more complex. How can 
you verify that each step in the boot sequence is running 
software that you know is secure? If our hardware or 
software has been compromised at any point in the boot 
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sequence then the attacker has the most privilege on our 
system and likely can do anything they want.

The goal of a hardware root of trust is to verify that the 
software installed in every component of the hardware 
is the software that was intended. This way you can 
verify and know without a doubt whether a machine’s 
hardware or software has been hacked or overwritten 
by an adversary. In a world of modchips16, supply chain 
attacks, evil maid attacks7, cloud provider vulnerabilities 
in hardware components2, and other attack vectors it has 
become more and more necessary to ensure hardware and 
software integrity. 

This article is an introduction to a complicated topic; 
some sections just touch the surface, but the intention 
is to provide a full picture of the world of secure booting 
mechanisms.

TRUSTED PLATFORM MODULE
A TPM (trusted platform module) is a standard for a 
dedicated microchip designed to secure hardware through 
integrated cryptographic keys. TPM was standardized by 
the ISO (International Organization for Standardization) 
and the IEC (International Electrotechnical Commission) 
in 2009 as ISO/IEC 11889.9 The TPM is typically installed on 
the motherboard of a computer, and it communicates with 
the remainder of the system using a hardware bus.

A TPM has the following features:18

3 A random number generator
3 A way to generate cryptographic keys
3 Integrity measurement
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3 Attestation
3 Wrapping/binding keys
3 Sealing/unsealing keys

Integrity measurement
Measurement is the process through which information 
about the software, hardware, and configuration of a 
system is collected and digested. At load time, the TPM 
uses a hash function to fingerprint an executable and its 
configuration. These hash values are used in attestation to 
reliably establish code identity to remote or local verifiers. 
The hash values can also be used in conjunction with the 
sealed storage feature. A secret can be sealed along with a 
list of hash values of programs that are allowed to unseal 
the secret. This allows the creation of data files that can 
be opened only by specific applications.

Attestation
Attestation reports the state of the hardware and 
software configuration. The integrity measurement 
software in charge of creating the hash key used for 
the configuration data determines the extent of the 
summary. The goal of attestation is to prove to a third 
party that your operating system and application software 
are intact and trustworthy. The verifier trusts that 
attestation data is accurate because it is signed by a TPM 
whose key is certified by the certificate authority (CA). 
TPMs are manufactured with a public/private key pair 
built into the hardware, known as the endorsement key. 
The endorsement key is unique to a specific TPM and is 
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signed by a trusted CA. The trust for attestation data is 
dependent on the trust for the CA that originally signed 
the endorsement key.

Attestation can reliably tell a verifier which applications 
are running on a client machine, but the verifier must still 
make the judgment about whether each given piece of 
software is trustworthy.

Wrapping/binding a key
A machine that uses a TPM can create cryptographic keys 
and encrypt them so that they can be decrypted only by 
the TPM. This process, known as wrapping or binding a key, 
can help protect the key from disclosure. Each TPM has 
a master wrapping key, also known as the storage root 
key, which is stored within the TPM. The private portion 
of a storage root key or endorsement key that is created 
in a TPM is never exposed to any other device, process, 
application, software, or user.

Sealing/unsealing a key
A machine that uses a TPM can also create a key that has 
not only been wrapped, but is also tied to certain platform 
measurements. This type of key can be unwrapped only 
when those platform measurements have the same values 
that they had when the key was created. This process is 
known as sealing the key to the TPM. Decrypting the key 
is called unsealing. The TPM can also seal and unseal data 
that is generated outside the TPM. With this sealed key 
and software you can lock data until specific hardware or 
software conditions are met.

4 of 17

I

W
hen 
boot- 
ing a  
machine 
secure-

ly, you want the 
first instruction 
run on that  
machine to be 
the one you 
would expect  
to run.

COMMIT TO 
memory



acmqueue | november-december 2019   5

I

CUSTOM SILICON
It is important to note the limitations of TPMs and 
provide some solutions to those. TPMs can attest that 
the firmware running on a machine is the firmware the 
user wants to run, but there is no mechanism in a TPM 
for verifying that the code is secure. It is up to the user to 
verify the security of the firmware and to ensure it does 
not contain any backdoors, which is impossible if the code 
is proprietary.

When booting a machine securely, you want the first 
instruction run on that machine to be the one you would 
expect to run. A TPM is insufficient for verifying that the 
actual bits of code to be executed are secure, so a few 
companies have created their own silicon for expanding on 
the security of TPMs.

Google’s Titan
For Google’s infrastructure, as well as Chromebooks, 
Google expanded on the security of the TPM with its own 
chip, Titan. Google open sourced5 a version of Titan9 (with 
both specs and code), which is under active development, 
in October 2019. In creating Titan, Google added two 
new features that did not exist in TPMs: first-instruction 
integrity and remediation. 

First-instruction integrity
First-instruction integrity allows verification of the 
earliest code that runs on each machine’s startup cycle. 
Titan observes every byte of boot firmware by interposing 
itself between the boot firmware flash (BIOS) of the BMC 
(or PCH) and the main CPU via the SPI bus. Therefore, the 
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boot sequence for a machine with a Titan chip is different 
from a normal boot sequence. 

The boot sequence with Titan is as follows:
1.  Titan holds the machine in reset.
2. �Titan’s application processor executes code from its 

embedded read-only memory (boot ROM). 
3. �Titan runs a memory built-in self-test to ensure that all 

memory (including ROM) has not been tampered with. 
4. �Titan verifies its own firmware using public-key 

cryptography, and mixes the identity of this verified code 
into Titan’s key hierarchy.  

5. �Titan loads the verified firmware. 
6. Titan verifies the host’s boot firmware flash (BIOS/UEFI).
7. � �Titan signals readiness to release the rest of the 

machine from reset.
8. �The CPU loads the basic firmware (BIOS/UEFI) from the 

boot firmware flash, which performs further hardware/
software configuration.

9. The rest of the standard boot sequence continues.

Holding the machine in reset while Titan 
cryptographically verifies the boot firmware, Titan enables 
the verification of the first instruction. Titan knows what 
boot firmware and operating system booted on your 
machine from the very first instruction. In fact, you even 
know which microcode patches may have been fetched 
before the boot firmware’s first instruction.

Remediation
What happens when we need to patch bugs in Titan’s 
firmware? This is where remediation comes into play. In the 
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event of patching bugs in the Titan firmware, trust can be 
reestablished through remediation. Remediation is based 
on a strong cryptographic identity. To provide a strong 
identity, the Titan chip manufacturing process generates 
unique keying material for each chip. The Titan-based 
identity system verifies not only the provenance of the 
chips creating the CSRs (certificate signing requests), but 
also the firmware running on the chips, as the code identity 
of the firmware is hashed into the on-chip key hierarchy. 
This property allows Google to fix bugs in Titan firmware 
and issue certificates that can be wielded only by patched 
Titan chips. 

The Titan-based identity system enables back-end 
systems to securely provision secrets and keys to 
individual Titan-enabled machines or jobs running on those 
machines. Titan is also able to chain and sign critical audit 
logs, making those logs tamper-evident. This ensures that 
audit logs cannot be altered or deleted without detection, 
even by insiders with root access to the relevant machine.

Microsoft’s Cerberus
Microsoft open sourced11 the specs for its chip, Cerberus11 
(at the time of writing this article, only the specs have 
been open sourced). Like Titan, Cerberus interposes on 
the SPI bus where firmware is stored for the CPU. This 
allows Cerberus to continuously measure and attest these 
accesses to ensure firmware integrity and thereby protect 
against unauthorized access and malicious updates. 

Apple’s T2
Apple is a poster child for secure booting devices. Most 
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people remember when the FBI wanted a backdoor into 
iPhones and Tim Cook refused.5 Between Macs, iPhones, 
and Chromebooks, an industry standard for products 
includes security by default.

For Apple machines, secure boot is done with Apple’s 
T2 chip.1 Ivan Krstic of Apple gave a talk at Black Hat 201912 
detailing the boot process for a Mac with Apple’s T2 chip.

Apple’s requirements for T2 were:
3 Signature verification of the complete boot chain.
3 �System software authorization (server-side downgrade 

protection).
3 �Authorization “personalized” for the requesting device 

(not portable).
3 �User authentication required to downgrade secure boot 

policy.
3 Secure boot policy protected against physical tampering.
3 System can always be restored to a known-good state.

The boot sequence for a machine using a T2 chip is as 
follows:
3 The machine is powered on.
3 T2 ROM is loaded and executed.
3 T2 ROM passes off to iBoot, the bootloader.
3 �The bootloader executes the bridgeOS kernel, the kernel 

for the T2 chip.
3 �The bridgeOS kernel passes off to the UEFI firmware for 

the T2 chip.
3 �The T2 chip then allows the CPU out of reset and loads 

the UEFI firmware for the CPU.
3  �The UEFI firmware for the CPU then loads macOS 

booter.
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3 �The macOS booter then executes the macOS kernel. 

One important design element of the T2 chip is how 
Apple verifies the version of MacOS running on a computer. 
T2 verifies the hash of MacOS against a list of approved 
hashes for running. Apple is in a unique position to have this 
level of verification since they own the entire stack and 
prevent users from running any other OS on their devices. 
If you would like to go deeper into the internals of the T2 
chip, read the slides for Ivan Krstic’s Black Hat talk.12

PLATFORM FIRMWARE RESILIENCY
Chip vendors are investing in PFR (platform firmware 
resiliency) based on NIST (National Institute of Standards 
and Technology) guidelines.15 These guidelines focus on 
ensuring the firmware remains in a state of integrity, 
detecting when it has been corrupted, and recovering the 
pieces of firmware back to a state of integrity. 

PFR addresses the vulnerability of enterprise servers 
that contain multiple processing components, each 
having its own firmware. This firmware can be attacked 
by hackers who may surreptitiously install malicious code 
in a component’s flash memory that hides from standard 
system-level detection methods and leaves the system 
permanently compromised.

The PFR specification is based on the following principles:
3 Protection, ensuring that firmware code and critical 
data remain in a state of integrity and are protected 
from corruption, such as the process for ensuring the 
authenticity and integrity of firmware updates.
3 Detection, detecting when firmware code and critical 
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data have been corrupted.
3 Recovery, restoring firmware code and critical data to a 
state of integrity in the event that any such firmware code 
or critical data are detected to have been corrupted, or 
when forced to recover through an authorized mechanism. 
Vendors have been building features around the NIST 
guidelines for PFR. Intel8 and Lattice Semiconductors13 
each has such a product.

UEFI SECURE BOOT
UEFI Secure Boot21 is designed to ensure that EFI binaries 
that are executed during boot are verified, either through 
a checksum or a valid signature, backed by a locally 
trusted certificate. When a machine using UEFI Secure 
Boot powers on, the UEFI firmware validates that each EFI 
binary either has a valid signature or the binary’s checksum 
is present on an allowed list. Counter to the allow list 
is a deny list that is also checked to ensure no binary’s 
checksum or signature exists on it. Users can configure the 
list of trusted certificates and checksums as EFI variables. 
These variables get stored in non-volatile memory used 
by the UEFI firmware environment to store settings and 
configuration data.

The UEFI kernel is extremely complex and has 
millions of lines of code. It consists of boot services and 
runtime services. The specification19 is quite verbose and 
complex. The UEFI kernel is a common vector for many 
vulnerabilities since it has some of the same proprietary 
code used on many different platforms. The UEFI kernel 
is shared on multiple platforms, making it a great target 
for attackers. Additionally, since only UEFI can rewrite 
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itself, exploits can be made persistent. This is because UEFI 
lives in the processor’s firmware, typically stored in the 
SPI flash. Even if a user were to wipe the entire operating 
system or install a new hard drive, an attack would persist 
in the SPI flash. 

INTEL’S BOOT GUARD
Boot Guard is Intel’s solution to verify the firmware 
signatures for the processor. Boot Guard works by 
flashing the public key of the BIOS signature into the field 
programmable fuses (FPFs), a one-time programmable 
memory inside Intel Management Engine (ME), during the 
manufacturing process. The machine then has the public 
key of the BIOS and it can verify the correct signature 
during every subsequent boot. However, once Boot Guard 
is enabled by the manufacturer, it cannot be disabled.

The problem with Boot Guard is that only Intel or the 
manufacturer has the keys for signing firmware packages. 
This makes it impossible to use coreboot, LinuxBoot, or any 
other equivalents as firmware on those processors. If you 
tried, the firmware would not be signed with the correct 
key, and the failed attempt to boot would brick the board.

Matthew Garrett wrote a great post about Boot Guard 
that highlights the importance of user freedom when it 
comes to firmware4. The owner of the hardware has a right 
to own the firmware as well. Boot Guard prevents this. In 
the security keynote at the 2018 Open Source Firmware 
Conference6, Trammel Hudson described how he found a 
vulnerability to bypass Boot Guard, CVE-2018-121693. The 
bug20 allows an attacker to use unsigned firmware and 
boot normally, completely negating the purpose of Boot 

I
11 of 17COMMIT TO 

memory



acmqueue | november-december 2019   12

Guard. Because Boot Guard is tied to the CPU, it does not 
have the control that a custom silicon hardware root of 
trust has when it comes to other firmware for components 
in the system.

SYSTEM TRANSPARENCY
The Mullvad virtual private network service published a 
paper on what it calls system transparency,17 which is aimed 
at facilitating trust for the components of a system by giving 
every server a unique identity, limiting the attack surface 
and mutable state in the firmware and allowing both owners 
and users to verify all software running on a platform 
starting from the first instruction executed after power on.

ST accomplishes these goals by following seven 
principles:
1. Identity binding. A key ceremony of each server to 
bind the server’s unique identity with a difficult to forge 
physical artifact like a video. 
2. Physical write-protection of the firmware. Writable 
code sections are a mutable state, so System Transparency 
limits the possible changes to this critical piece of code. 
Read-only code also serves as a root of trust for all other 
software-enforced security mechanisms.
3. Tamper detection. Attackers cannot be stopped from 
changing the content of the firmware flash by replacing 
the actual chip. So, violations of the physical integrity of 
the server hardware need to be detectable.
4. Measured boot. System Transparency has the goal to 
give all parties insight into what code was run as part of 
the system boot. A measured boot in combination with 
remote attestation allows third parties to acquire a 
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cryptographic log of the boot.
5. Reproducible builds. Ensures that if a binary artifact is 
built once, it can be built again and again and produce the 
same artifact. This establishes a verifiable link between 
the human-readable code and the binary that was attested 
using the measured boot mechanism.
6. Immutable infrastructure. System transparency only 
works when changes to the operating system are limited. 
Allowing somebody to log into the system and make 
arbitrary changes invalidates all guarantees of a measured 
boot.
7. Binary transparency log. All firmware and OS images 
that can be booted on a system are signed by the system’s 

owner and are inserted into a 
public, append-only log. Users 
of the system can monitor this 
log for new entries and catch 
malicious system owners booting 
backdoored firmware on new 
servers.

THE IMPORTANCE OF OPEN 
SOURCE FIRMWARE
Securing the boot process 
with a hardware root of trust 
has various implementations 
throughout the industry. Without 
open source firmware, the 
proprietary bits of the boot 
process still lack the visibility 
and auditability to ensure 
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that software is secure. Even if you can verify through 
a hardware root of trust that the hash of proprietary 
firmware is the hash known to be true, you need visibility 
into the firmware’s source code for assurance it does not 
contain any backdoors. Through this visibility you can also 
gain ease of use in debugging and fixing problems without 
relying on a vendor. 

Firmware is scattered throughout motherboards of 
machines and their components; it is in the CPU (central 
processing unit), NIC (network interface controller), SSD 
(solid-state drive), HDD (hard-disk drive), GPU (graphics 
processing unit), fans, and more. To ensure the integrity of 
a machine, all these components must be verified. In the 
future, these custom silicon chips will interpose not only on 
the SPI flash but also on every other device communicating 
with the BMC.

If you would like to help with the open source firmware 
movement, push back on your vendors and the platforms 
you are using to make their firmware open source. 
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