
acmqueue | may-june 2019 1

firmware

O
perating systems such as Windows, Linux, and
macOS have kernels. The kernel controls access
to system resources. It contains the logic for
allowing multiple processes to share hardware
mechanisms such as CPU, memory, disk I/O, and

networking.
When a computer boots, the main interface for

initializing the DRAM (dynamic random-access memory),
silicon, and devices is the firmware. The firmware initializes
the operating system with a bootloader. You might have
heard of GRUB (derived from Grand Unified Bootloader), a
common bootloader for Linux distros.

Every computer or server typically comes with
firmware produced by the vendor that manufactured it.
Firmware lives in the SSD (solid-state drive)/HD (hard
drive), keyboard, mouse, CPU, network card, and other
devices.

Exploits in firmware can cause a lot of harm because
of the many privileged operations for which firmware is
responsible. For example, consider the hack on SoftLayer,3
a bare-metal cloud, where the BMC (base management
controller) was hacked to leave a backdoor so when a
server was reprovisioned after a customer used it, the
hacker could still have access to that server. The minimum

Step into the
world behind
the kernel.

JESSIE FRAZELLE

1 of 14 TEXT
ONLY

Open-source
Firmware

acmqueue | may-june 2019 2

firmware

bar for any cloud provider is to provide a machine for a
user that gets wiped cleanly and completely after use. This
is a clear violation of that promise.

Making matters worse, most firmware is proprietary.
The code that runs with the most privilege has the
least visibility. This leads to breaches and incidents that
have the capacity to affect users on multiple platforms
simultaneously. To hackers this is like catnip.

Open-source firmware can help bring computing to
a more secure place by making the actions of firmware
more visible and less likely to do harm. This article’s goal
is to make readers feel empowered to demand more from
vendors who can help drive this change.

This is an introduction to a complicated topic; some
sections just touch the surface, but the intention is
to provide a full picture of the world of open-source
firmware.

PRIVILEGE LEVELS
Computers today have various levels of privileges.
3 Ring 3 – Userspace. This ring has the fewest privileges.
This is where user programs run. Userspace sandboxes can
restrict privileges further.
3 Ring 0 – Kernel. This is the operating-system kernel;
open-source operating systems allow visibility into the
code behind the kernel.
3 Ring -1 – Hypervisor. This VMM (virtual machine
monitor) creates and runs virtual machines. Open-source
hypervisors such as Xen, KVM, bhyve, etc. provide visibility
into the code behind this ring.
3 Ring -2 – SMM (System Management Mode), UEFI

2 of 14

acmqueue | may-june 2019 3

firmware

(Unified Extensible Firmware Interface) kernel. This is
proprietary code that controls all CPU resources (more on
this later).
3 Ring -3 – Management Engine. This is proprietary code
that runs as long as the motherboard is receiving power,
even if it is off (more on this later).

This summary makes clear that rings -1 to 3 have the
option to use open-source software, and have a large
amount of visibility and control over the software. The
privilege levels under ring -1 allow less control, but the
situation is improving with the open-source firmware
community and projects.

It’s counterintuitive that the code with the least visibility
has the most privilege. This is what open-source firmware
is aiming to fix. The ecosystem’s goals are focused on
making firmware less capable of doing harm and making its
actions more visible.

Ring -2: SMM, UEFI kernel
This ring controls all CPU resources. SMM is invisible to
the rest of the stack on top of it. It was originally used
for power management and system hardware control. It
handles system events such as memory or chipset errors.

UEFI is the interface between the operating system and
the BIOS firmware. EFI, the predecessor of UEFI, was made
to solve BIOS bit and address limitations. Since then, more
functionality has been added to the UEFI spec, including
cryptography, networking, and authentication. The UEFI
kernel is extremely complex and has millions of lines of
code. It consists of boot services and runtime services.
The specification (https://uefi.org/specifications) is quite

3 of 14

I
t’s counter-
intuitive that
the code
with the least
visibility

has the most
privilege.

acmqueue | may-june 2019 4

firmware

verbose if you want to dig in. UEFI applications such as the
UEFI shell, GRUB, Gummiboot, or Windows Boot Manager
have the option of being active after boot.

The UEFI kernel is a common vector for many
vulnerabilities since it has some of the same proprietary
code used on many different platforms. Bootloaders
such as GRUB and Windows Boot Manager are platform
specific. The UEFI kernel is shared on multiple platforms,
making it a great target for attackers.

Additionally, since only UEFI can rewrite itself, exploits
can be made persistent. This is because UEFI lives in the
processor’s firmware, typically stored in the SPI (Serial
Peripheral Interface) flash. Even if a user were to wipe
the entire operating system or install a new hard drive, an
attack would persist in the SPI flash.

Ring -3: Management Engine
In the case of Intel (x86), Ring -3 is the Intel Management
Engine. 7 It can turn on nodes and reimage disks invisibly.
It has a kernel that runs Minix,11 as well as a web server
and entire networking stack. Because of this, Minix is the
world’s most widely used operating system. There is a lot
of functionality in the Management Engine; it could take
all day to list it all, but many resources are available for
digging into more detail.16

Between Ring -2 and Ring -3 there are at least two and a
half other kernels in our stack that have many capabilities.
Each of these kernels has its own networking stacks
and web servers, which is unnecessary and potentially
dangerous, especially if you do not want these rings
reaching out over the network to update themselves. The

4 of 14

acmqueue | may-june 2019 5

firmware

code can also modify itself and persist across power cycles
and reinstalls. There is very little visibility into what the
code in these rings is actually doing, which is horrifying,
considering these rings have the most privileges.

They all have exploits
It should be of no surprise to anyone that Rings -2 and -3
have their fair share of vulnerabilities. Exploits here have
a huge impact radius when they happen. For example,
there was a bug in the web server of the Intel Management
Engine.14 No one realized the bug existed for seven years.

How can we make it better?

FIRMWARE PROJECTS
Firmware projects are typically stored in SPI flash.

u-boot and coreboot
u-boot (https://www.chromium.org/developers/u-boot) and
coreboot (https://www.coreboot.org/) are open-source
firmware. They handle silicon and DRAM initialization.
Google Chromebooks use both: coreboot on x86 and
u-boot for the rest. This is one part of how Google verifies
boot.2 Verified boot reduces the risk of malware, permits
safe software updates, and ensures the integrity of the
software on the device.

Coreboot’s design philosophy is to “do the bare minimum
necessary to ensure that hardware is usable and then pass
control to a different program called the payload” (https://
doc.coreboot.org). The payload in this case is LinuxBoot.

5 of 14

https://www.chromium.org/developers/u-boot
https://www.coreboot.org/

acmqueue | may-june 2019 6

firmware

LinuxBoot
LinuxBoot (https://www.linuxboot.org/), formerly known as
Non-extensible Reduced Firmware, or NERF (https://trmm.
net/NERF), handles device drivers, manages the network
stack, and supplies a multiuser, multitasking environment.
It is built with Linux so that a single kernel can work for
several boards. It is arguably better to use an open-source
kernel with lots of eyes on it, rather than the two and a
half other kernels that are all different and closed off. This
means that you are lessening the attack surface by using
fewer variations of code, and you are making an effort
to rely on code that is open source. Linux improves boot
reliability by replacing minimally tested firmware drivers
with hardened Linux drivers. (Linux is significantly more
vetted than most proprietary systems are; it has lots of
eyes on it, since it is used quite extensively.)

By using a kernel that already has tooling, firmware
devs can build using tools they already know. When
they need to write logic for signature verification, disk
decryption, and the like, they can use a language that is
modern, easily auditable, maintainable, and readable.

RUNTIMES
Runtimes enable systems to use open source firmware and
run custom programming logic.

Heads
Heads (http://osresearch.net/) is a configuration of
coreboot that has a securely configured Linux kernel as
the coreboot payload. It works on servers and laptops.
The project, started by Trammel Hudson, is influenced

6 of 14

https://www.linuxboot.org/
https://www.linuxboot.org/
file:///C:\Users\matt\Downloads\Non-extensible%20Reduced%20Firmware
http://osresearch.net/

acmqueue | may-june 2019 7

firmware

by several years of firmware vulnerability research
(Thunderstrike, https://trmm.net/Thunderstrike; and
Thunderstrike 2, https://trmm.net/Thunderstrike_2).

u-root
u-root (https://github.com/u-root/u-root) is a set of Golang
userspace tools and bootloader. It is used as the initramfs
for the Linux kernel from LinuxBoot.

By being open source, this new firmware stack helps
improve the visibility into many of the components that
were previously very proprietary. Using LinuxBoot makes
boot times 20 times faster.12 Booting an open compute
node to a Linux shell went from 8 minutes to 17 seconds, a
speed improvement of 32 times.

WHAT ABOUT ALL THE OTHER FIRMWARE?
Open-source firmware is needed for a plethora of other
devices, too. These include the following:
3 �EC (embedded controller)/SIO (super I/O). This is for

mobile devices and desk-based platforms. It controls
keyboards, temperature monitoring, etc.

3 �TPM (Trusted Platform Module). This is a secure home for
cryptographic keys.

3 BMC (baseboard management controller)/ME
(management engine). A BMC is associated with server
platforms while an ME is typically associated with client
platforms. For an open-source BMC, there are two
projects: OpenBMC (https://github.com/openbmc/openbmc)
and u-bmc (https://github.com/u-root/u-bmc). me_cleaner
(https://github.com/corna/me_cleaner) is the project used
to clean the Intel Management Engine to the smallest

7 of 14

https://trmm.net/Thunderstrike
https://trmm.net/Thunderstrike_2
https://github.com/u-root/u-root
https://github.com/openbmc/openbmc
https://github.com/u-root/u-bmc
https://github.com/corna/me_cleaner

acmqueue | may-june 2019 8

firmware

necessary capabilities.
3 �NIC (network interface controller). Work is being done in

the open compute project on NIC 3.0,13 a spec for a NIC.
3 GPU (graphics processing unit).
3 HDD (hard disk drive)/SSD (solid-state drive).
3 �eMMC (embedded MultiMediaCard (eMMC)/UFS

(Universal Flash Storage). Storage devices for mobile
systems.

3 Power supply.
3 �CPLDs (complex programmable logic devices), FPGAs

(field-programmable gate arrays). The programmable
logic components.

3 Fans.
Open-source firmware is necessary not only to provide

visibility into the stack, but also to verify the state of
software on a machine.

INTEL’S BOOT GUARD
Boot Guard is supposed to verify the firmware signatures
for the processor. The problem with this, in the case of
Intel processors, is that only Intel has the keys for signing
firmware packages. This makes it impossible to use
coreboot and LinuxBoot or their equivalents as firmware
on those processors. If you tried, the firmware would not
be signed with Intel’s key, and the failed attempt to boot
would brick the board.

A post about Boot Guard by Matthew Garrett
highlights the importance of user freedom when it comes
to firmware.1 The owner of the hardware has a right to
own the firmware as well. Boot Guard prevents this. In
the security keynote at the 2018 Open Source Firmware

8 of 14

acmqueue | may-june 2019 9

firmware

Conference,5 Trammel Hudson described how he found a
vulnerability to bypass Boot Guard (https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2018-12169); the bugzilla
details can be found at https://bugzilla.tianocore.org/
show_bug.cgi?id=1614. The bug allows an attacker to use
unsigned firmware and boot normally, completely negating
the purpose of Boot Guard.

ROOT OF TRUST
The goal of the root of trust should be to verify that the
software installed in every component of the hardware
is the software that was intended. This way you can know
without a doubt and verify if hardware has been hacked.
Since you have very little to no visibility into the code
running in a lot of places in your hardware, it is hard to do
this currently. How do you really know that the firmware in
a component is not vulnerable or that it doesn’t have any
backdoors? You can’t know without a firm root of trust.

Every cloud and vendor seems to have its own way of
implementing a root of trust. Microsoft has Cerberus,15
Google has Titan,18 and Amazon has Nitro.4

Paul McMillan and Matt King gave a presentation
in 2018 on securing hardware at scale.8 It covers in
great detail how to secure bare metal, while also giving
customers access to the bare metal. When customers
return hardware to them, they need to ensure with
consistency and reliability that nothing from the customer
is hiding in any component of the hardware.

All clouds need to ensure that the hardware they are
running has not been compromised after a customer has
used compute resources.

9 of 14

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-12169

acmqueue | may-june 2019 10

firmware

Platform Firmware Resiliency
Chip vendors are investing in PFR (platform firmware
resiliency) based on NIST (National Institute of Standards
and Technology) guidelines.17 These guidelines focus on
ensuring the firmware remains in a state of integrity,
detecting when it has been corrupted, and recovering the
pieces of firmware back to a state of integrity.

Vendors have been building features around the NIST
guidelines for PFR. Intel6 and Lattice Semiconductors10
each have a version. The OCP (Open Compute Project) talk
on Intel’s firmware innovations9 states that Intel is using
PFR to deliver Microsoft’s Cerberus’ attestation principles.

CHALLENGES
One challenge of open-source firmware involves the
threat model. Whether you have a root of trust, and how
that root of trust operates, depends on the threat model.
Let’s dive in a bit with an example. If you are an enterprise
with your own cloud, your threat model would prevent you
from using any firmware that might contain vulnerabilities
or backdoors that would threaten your business or
customer data. In this case, you would ideally want an
entirely open-source root of trust, as well as open-source
firmware for each of the devices in your server or laptop,
with reproducible builds to ensure integrity. This would
give you the most visibility into the firmware that is
running and the logic it is composed of.

Another challenge is writing the firmware for all the
devices. There are a lot of device options for vendors to
use in their systems, so supporting many of those will be
hard without the device vendors helping out. For example,

10 of 14

acmqueue | may-june 2019 11

firmware

consider that many different
vendors manufacture DRAM or
SSDs.

HOW TO HELP
The goal of this article is to
provide some insight into what’s
being built with open-source
firmware and why making
firmware open source is so
important. To help with this effort,
please help spread the word. Try
to use platforms that value open-
source firmware components.
Chromebooks are a great example
of this, are Purism (https://puri.sm/)
computers. Ask your providers
what they are doing to further the
cause of open-source firmware or
ensuring hardware security with
roots of trust.

Acknowledgments
Huge thanks to the open-source firmware community and
a shout out to Ron Minnich, Trammel Hudson, Chris Koch,
Rick Altherr, and Zaolin for helping me along this journey.

References
1. �Garrett, M. 2015. Intel Boot Guard, Coreboot and user

freedom.; https://mjg59.dreamwidth.org/33981.html.
2. �Glass, S. 2013. Verified boot in Chrome OS and how

Related articles

3 Continuous Delivery Sounds Great,
but Will It Work Here?
It’s not magic, it just requires continuous,
daily improvement at all levels.
Jez Humble
https://queue.acm.org/detail.cfm?id=3190610

3 Toward Higher Precision
An introduction to PTP and its
significance to NTP practitioners
Rick Ratzel and Rodney Greenstreet
https://queue.acm.org/detail.cfm?id=2354406

3 Simulators: Virtual Machines
of the Past (and Future)
Has the time come to kiss
that old iron goodbye?
Bob Supnik
https://queue.acm.org/detail.cfm?id=1017002

11 of 14

https://puri.sm/
https://queue.acm.org/detail.cfm?id=3190610
https://queue.acm.org/detail.cfm?id=2354406
https://queue.acm.org/detail.cfm?id=1017002

acmqueue | may-june 2019 12

firmware

to make it work for you. Embedded Linux Conference
Europe; https://static.googleusercontent.com/media/
research.google.com/en//pubs/archive/42038.pdf.

3. �Goodin, D. 2019. Supermicro hardware weaknesses
let researchers backdoor an IBM cloud server.
arsTechnica; https://arstechnica.com/information-
technology/2019/02/supermicro-hardware-
weaknesses-let-researchers-backdoor-an-ibm-cloud-
server/.

4. �Hamilton, J. 2019. AWS Nitro System. Perspectives;
https://perspectives.mvdirona.com/2019/02/aws-nitro-
system/.

5. �Hudson, T. 2018. Open Source Firmware Conference
Security Keynote; https://trmm.net/OSFC_2018_
Security_keynote#Boot_Guard.

6. �Intel. 2017. Intel Data Center Block with Firmware
Resilience. Solution Brief; https://www.intel.com/
content/dam/www/public/us/en/documents/solution-
briefs/firmware-resilience-blocks-solution-brief.pdf.

7. �Intel. 2017. What is Intel® Management Engine? Intel;
https://www.intel.com/content/www/us/en/support/
articles/000008927/software/chipset-software.html.

8. �King, M., McMillan, P. 2018. Securing bare metal
hardware at scale. BSides PDX; https://www.youtube.
com/watch?v=PEVVRkd-wPM

9. �Kumar, M. J. 2018. OCP initiatives and Intel
implementations; https://www.opencompute.org/files/
Intel-System-Firmware-InnovationsMohanKumar-
OCP18.pdf.

10. �Lattice Semiconductors. 2018. Universal Platform
Firmware Resiliency (PFR) – Servers; http://

12 of 14

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42038.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42038.pdf
https://arstechnica.com/information-technology/2019/02/supermicro-hardware-weaknesses-let-researchers-backdoor-an-ibm-cloud-server/
https://arstechnica.com/information-technology/2019/02/supermicro-hardware-weaknesses-let-researchers-backdoor-an-ibm-cloud-server/
https://arstechnica.com/information-technology/2019/02/supermicro-hardware-weaknesses-let-researchers-backdoor-an-ibm-cloud-server/
https://arstechnica.com/information-technology/2019/02/supermicro-hardware-weaknesses-let-researchers-backdoor-an-ibm-cloud-server/
https://perspectives.mvdirona.com/2019/02/aws-nitro-system/
https://perspectives.mvdirona.com/2019/02/aws-nitro-system/
https://trmm.net/OSFC_2018_Security_keynote#Boot_Guard
https://trmm.net/OSFC_2018_Security_keynote#Boot_Guard
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/firmware-resilience-blocks-solution-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/firmware-resilience-blocks-solution-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/firmware-resilience-blocks-solution-brief.pdf
https://www.intel.com/content/www/us/en/support/articles/000008927/software/chipset-software.html
https://www.intel.com/content/www/us/en/support/articles/000008927/software/chipset-software.html
https://www.youtube.com/watch?v=PEVVRkd-wPM
https://www.youtube.com/watch?v=PEVVRkd-wPM
https://www.opencompute.org/files/Intel-System-Firmware-InnovationsMohanKumar-OCP18.pdf
https://www.opencompute.org/files/Intel-System-Firmware-InnovationsMohanKumar-OCP18.pdf
https://www.opencompute.org/files/Intel-System-Firmware-InnovationsMohanKumar-OCP18.pdf
http://www.latticesemi.com/en/Solutions/Solutions/SolutionsDetails02/PFR

acmqueue | may-june 2019 13

firmware

www.latticesemi.com/en/Solutions/Solutions/
SolutionsDetails02/PFR.

11. �Leroux, S. 2017. The truth about the Intel’s hidden Minix
OS and security concerns. It’s FOSS; https://itsfoss.com/
fact-intel-minix-case/.

12. �Minnich, R., et al. 2017. Replace your exploit-ridden
firmware with a Linux kernel; https://schd.ws/hosted_
files/osseu17/84/Replace%20UEFI%20with%20Linux.pdf.

13. �OCP Server Workgroup, OCP NIC subgroup. Open
Compute Project OCP NIC 3.0 Design Specification
Version 0.85b. 2018 https://www.opencompute.org/
documents/ocp-nic-3-0-draft-0v85b-20181213b-tn-
temp-no-cb-1-pdf

14. �Newman, L. H. 2017. Hack brief: Intel fixes a critical bug
that lingered for 7 dang years. Wired; https://www.
wired.com/2017/05/hack-brief-intel-fixes-critical-bug-
lingered-7-dang-years/.

15. �Open Compute Project. 2018. Project Cerberus. GitHub;
https://github.com/opencomputeproject/Project_
Olympus/tree/master/Project_Cerberus.

16. �Pataky, D. 2017. Intel Management Engine. Technische
Universität Dresden; https://files.bitkeks.eu/docs/
intelme-report.pdf.

17. �Regenscheid, A. 2018. Platform Firmware Resiliency
Guidelines. NIST Special Publication 800-193; https://
nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.
SP.800-193.pdf.

18. �Savagaonkar, U., et al. 2017. Titan in depth: Security in
plaintext. Google Cloud; https://cloud.google.com/blog/
products/gcp/titan-in-depth-security-in-plaintext.

13 of 14

http://www.latticesemi.com/en/Solutions/Solutions/SolutionsDetails02/PFR
http://www.latticesemi.com/en/Solutions/Solutions/SolutionsDetails02/PFR
https://itsfoss.com/fact-intel-minix-case/
https://itsfoss.com/fact-intel-minix-case/
https://schd.ws/hosted_files/osseu17/84/Replace%20UEFI%20with%20Linux.pdf
https://schd.ws/hosted_files/osseu17/84/Replace%20UEFI%20with%20Linux.pdf
https://www.opencompute.org/documents/ocp-nic-3-0-draft-0v85b-20181213b-tn-temp-no-cb-pdf
https://www.opencompute.org/documents/ocp-nic-3-0-draft-0v85b-20181213b-tn-temp-no-cb-pdf
https://www.opencompute.org/documents/ocp-nic-3-0-draft-0v85b-20181213b-tn-temp-no-cb-pdf
https://www.wired.com/2017/05/hack-brief-intel-fixes-critical-bug-lingered-7-dang-years/
https://www.wired.com/2017/05/hack-brief-intel-fixes-critical-bug-lingered-7-dang-years/
https://www.wired.com/2017/05/hack-brief-intel-fixes-critical-bug-lingered-7-dang-years/
https://github.com/opencomputeproject/Project_Olympus/tree/master/Project_Cerberus
https://github.com/opencomputeproject/Project_Olympus/tree/master/Project_Cerberus
https://files.bitkeks.eu/docs/intelme-report.pdf
https://files.bitkeks.eu/docs/intelme-report.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-193.pdf
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext
https://cloud.google.com/blog/products/gcp/titan-in-depth-security-in-plaintext

acmqueue | may-june 2019 14

firmware

Jessie Frazelle is an independent contractor. She has worked
as an engineer at GitHub, Microsoft, Google, Docker, and a
bunch of startups before that.
Copyright © 2019 held by owner/author. Publication rights licensed to ACM.

14 of 14

