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A
lan Kay once said, “People who are really serious 
about software should make their own hardware.” 
We are now seeing product companies genuinely 
live up to this value. On August 19, 2021, Tesla 
showed off Dojo, its new chip used for training 

neural networks. You might imagine the lead of an article 
about this something along the lines of, “A company 
that is not in the business of making chips, made its own 
chip for its own specific use case, wat!” That part of 
the announcement was not so shocking because it was 
something seen before with Tesla and its FSD (full self-
driving) computer, with Cisco and its network ASICs, and 
recently with Apple’s M1 chip. In reality the shocking part 
of the Tesla announcement was not their chip but their 
humanoid robot, but we’ll save that for another article.

Companies such as Tesla and Apple are so serious about 
their software (and hardware) that they bite off more and 
more challenging problems lower in the stack to give their 
customers better products. Additionally, with Moore’s 
law slowing down, chip manufacturers are forced to get 
more and more creative in their approaches, resulting in 
diversification among chips. It is an exciting time to be alive 
when the incumbents known as the chip vendors are being 
outdone, in the very technology that is their bread and 
butter, by their previous customers. 

It is important to note that it is hard for chip vendors 
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to stray from general-purpose chips since those are how 
they can get the most customers and maintain a successful 
business. That being said, let’s dive into some of the 
interesting bits of these purpose-built chips: the benefits 
of economics, user experience, and performance for the 
companies building them.

AI CHIPS
GPUs were originally designed for graphics, hence the 
name graphics processing unit. GPUs are not actually 
made for neural networks; however, they tend to be used 
for this solely because they outperform CPUs since they 
have lots of cores for running computations in parallel. In 
2016, Google introduced the TPU (tensor processing unit), 
which is an ASIC (application-specific integrated circuit) 
made for neural networks. ASICs made explicitly for neural 
networks tend to be very good at matrix multiplication 
and floating-point operations since that is largely what 
training a neural network is all about. This is why you 
often see these types of chips advertised by comparing 
FLOPS (floating-point operations per second). Traditional 
GPUs focus on calculations for placing pixels; they are 
also capable of matrix multiplication and floating-point 
operations but not to the same scale as those made 
specifically for neural networks. 

If you are doing any complex work with neural 
networks, you have only a few good options for compute. 
Traditionally, the champion in this space has been Nvidia’s 
A100. A company like Tesla, that competes directly with 
Google’s self-driving car experiments, likely does not 
want its data in Google’s cloud. So the A100 is its only 

2 of 17

ICOMMIT TO 
memory



acmqueue | september-october 2021   3

option. The A100 comes at a steep price, and Nvidia 
seems to take advantage of its domination in this space. 
Because of Nvidia’s high margins, Tesla could get better 
unit economics and performance by making its own chips. 
Because of the cost of designing the chip, building the 
software, manufacturing, and maintenance, however, 
Tesla’s strategy is likely less a result of economics and 
more because of vertical integration and the performance 
benefits of designing to its specific use case.

Startups such as Cerebras, Groq, and Graphcore have 
entered the space as well. The dominant public opinion in 
this space seems to be, “Can anyone please compete with 
Nvidia?” [youtube.com] Chips tend to be made specifically 
for either training or inference, or both (denoted as 
general-purpose here). 

Training is the process of developing a neural network 
based on examples. Training neural networks is memory 
intensive since backpropagation requires storing 
activations of all intermediate layers; therefore, chips 
made for training tend to have much more memory. 

Inference is like production in that data is fed to a model 
in order to get a prediction. Inference of models has strong 
latency requirements because you want to get a prediction 
as fast as you can. For self-driving cars, a slow prediction 
could mean the difference between life and death. Tesla’s 
FSD computer is made for inference (it is in your car while 
you are driving, predicting what your car and other cars 
should do), while the Dojo D1 chip is made for training. 

There is quite a variety of different names for ASICs 
that are best suited for neural networks. Google calls its 
ASIC a TPU; Nvidia refers to the A100 and others as GPUs; 
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Groq uses the term TSP (tensor streaming processor); 
Graphcore invented the term IPU (intelligence processing 
unit); and Apple goes with NPU, for neural processing 
unit. (It would be nice to standardize on the Apple term 
only because it uses the word neural, which implies neural 
networks, instead of everyone coming up with their own 
names, but what do I know?)

Table 1 compares the most recent generations of 
all these chips. Note that all the numbers in the table 
are taken from marketing materials, not from actual 
benchmarks.

Tesla’s Dojo training tile packaging leverages TSMC’s 
new InFO_SoW (integrated fan out system on wafer) 
technology [ieee.org]. Electrical performance, as well as 
cost and yield, benefit significantly from this packaging. 
InFO_SoW provides the wafer-scale benefits of low-
latency chip-to-chip communication, high-bandwidth 
density, and low PDN (power distribution network) 
impedance for greater computing performance and power 
efficiency with none of the downsides. Those familiar with 
manufacturing chips might be wary of yield with a wafer-
scale chip like Cerebras. For its WSE (wafer-scale engine) 
and WSE-2 processors, Cerebras disables whole rows and 
columns that contain broken tiles, which means there are 
no problems with yield.  

The Dojo training tile consists of 25 D1 chips, which 
makes it easier to compare to the Cerebras WSE-2. 
The main difference to note between WSE-2 and the 
Dojo training tile is that WSE-2 is a single wafer. The 
25 D1 chips that make up a training tile can be chosen 
to ensure all the chips are manufactured properly 
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TABLE 1: Chip comparison

Name
Cerebras  

WSE-21
Dojo 

Training 
Tile2

Dojo D12
NVIDIA  
A100  

80GB SXM3

Google 
 Cloud  

TPU v4i4

Groq  
TSP5

Graph- 
core 

Colossus™ 
MK2 GC200 

IPU6

Tens- 
torrent  

Gray- 
skull  

e300 PCIe7

Size 46,225  
mm2

< 92,903 
mm2

645  
mm2

826  
mm2

< 400  
mm2

823  
mm2

Cores 850,000 35,400 1,4168 6,912 CUDA 
+ 432 Tensor

1 1 1,472

BF16/CFP89 9  
PFLOPS

362  
TFLOPS

312 
TFLOPS10

138 
TFLOPS11

FP64 9.7 TFLOPS12

FP32 565 
TFLOPS

22.6  
TFLOPS

19.5  
TFLOPS

64  
TFLOPS

FP16 312  
TFLOPS

250 
TFLOPS

250  
TFLOPS

INT8 624  
TOPS

138  
TOPS

1  
POPS

600  
TOPS

On-chip 
memory (SRAM)

40  
GBs

11  
GBs

442.5  
MBs13

40  
MBs14

151  
MBs15

220  
MBs

900  
MBs

DRAM 80 GBs16 
HBM

8  
GiBs HBM

16 GBs16

Memory 
bandwidth17

20 
PBs/sec

10  
TBs/sec

10  
TBs/sec

2.039  
TBs/sec

614  
GBs/sec

80  
TBs/sec

47.5  
TBs/sec

200  
GBss/sec

Fabric 
bandwidth

27.5  
PBs/sec18

36  
TBs/sec

4  
TBs/sec

600  
GBs/sec19

100  
GBs/sec

500  
GBs/sec20

320  
GBs/sec

Max TDP* 20kW / 15kW 15kW 400W 400W 175W 300W

Process 7nm 7nm 7nm 7nm 7 nm 14 nm 7nm

Transistors 2.6  
trillion

1.250 
trillion

50  
billion

54  
billion

16  
billion

26.8  
billion

59.4  
billion

Made for general-
purpose

training training general-
purpose

general-
purpose

Inference general-
purpose

general-
purpose

Price $2-3 
million+21

$20,000+ $2,000

* Thermal Design Power
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1    https://cerebras.net/chip/
2   https://www.youtube.com/watch?v=j0z4FweCy4M 
3    https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-

a100-datasheet-us-nvidia-1758950-r4-web.pdf 
4   https://ieeexplore.ieee.org/document/9499913 
5   https://groq.com/technology/ 
6   https://www.graphcore.ai/products/ipu 
7    https://tenstorrent.com/grayskull/ 
8   354 units per chip * 4 cores per unit.
9    Configurable floating point 8 (CFP8) only applies to Tesla’s Dojo.
10   624 TFLOPS with sparsity. Meaning you can get two times the maximum throughput 

of dense math for matrices of numbers that includes many zeros or values that will 
not significantly impact a calculation. Sparsity tends to only be useful for inference.

11    https://www.hpcwire.com/2021/05/20/google-launches-tpu-v4-ai-chips/ Google 
claims 4096 chips per pod and 1 pod has over one exaflops of floating point 
performance.

12   The A100s are the only one to advertise this number, some chips might not support, 
and some might not advertise support.

13   354 units per chip * 1.25 megabytes per functional unit.
14   https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-

architecture-whitepaper.pdf 
15   Google advertises this as MiB, but we convert to megabytes for easy comparison to 

the other numbers.
16   Their website says gigabytes (GB) but likely this is actually gibibytes (GiB).
17    For chips with high bandwidth memory (HBM) / DRAM, this refers to the bandwidth 

to that memory. Whereas for chips without DRAM/HBM, this refers to the SRAM 
bandwidth. For chips with both, the SRAM bandwidth is not listed only the HBM/
DRAM bandwidth, but you can assume typical SRAM bandwidths.

18   The Cerebras marketing material shows this as 220 petabits, but converted to 27.5 
petabytes for comparison to the other numbers.

19   With NVIDIA’s NVLink. This is half-duplex, meaning it supports either 600 GB/s out of 
the chip or into the chip but not both.

20  This is half-duplex.
21  This number is based on the CS-2 systems.
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I

without defects. A single wafer presents more risk of 
a defect or manufacturing error, but Cerebras claims 
this is not a problem [cerebras.net]. As shown in table 1, 
Cerebras clearly overshadows the other chips in terms of 
bandwidth because it is wafer-scale. 

Most of these chips integrate into machine-learning 
frameworks such as TensorFlow and PyTorch with a single 
line of code. This makes it easy for developers to change 
the underlying hardware. Some of the newer chips from 
startups (Graphcore, Groq, and others) are a bit behind 
in this regard but have roadmaps to get there. Outside 
the major frameworks, software integration for these 
specialized chips is a bit more limited, making traditional 
GPUs more appealing for workloads outside this scope.

BENCHMARKS
Table 2 shows the results of running Andrej Karpathy’s 
minGPT [github.com] and Google’s AutoML EfficientDet 
[github.com] on a few different accelerators in the cloud. 
(Google’s TPU requires a patch since minGPT works only 
on CPUs or Nvidia’s CUDA [github.com] [github.com].) The 
minGPT results include both the time to train the model 
and run a single prediction. These are the notebooks in 
the minGPT repository: play_math, play_image, and 
play_char. The EfficientDet numbers are only inference 
because the models are pretrained. End-to-end latency 
measures from the input image to the final rendered new 
image, which includes image preprocessing, network, 
postprocessing, and NMS (non-maximum suppression).

If you are looking to buy a chip like Tesla’s, the closest in 
architecture is Cerebras. Tesla is not the only company to 
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https://github.com/karpathy/minGPT/compare/master...jessfraz:distributed-TPU.patch


acmqueue | september-october 2021   8

Cloud 
Provider

AWS Azure GCP GCP GCP GCP GCP

Type p4d.24xlarge1 Standard_
ND96asr_
v42

v3-83 v3-324 v3-644 a2-high 
gpu-8g5

a2-high 
gpu-16g5

Accelerator 8 NVIDIA A100s  
(40GB HBM2)

8 NVIDIA 
A100s 
(40GB 
HBM2)

4 TPU v3   
(8 cores)

16 TPU v3 
(32 cores)

32 TPU v3 
(64 cores)

8 NVIDIA 
A100s  
(40GB 
HBM2)

16 NVIDIA 
A100s 
(40GB 
HBM2)

CPU 96 3.0 GHz 2nd 
Generation Intel 
Xeon Scalable 
(Cascade Lake)

96 2nd-
generation 
AMD Epyc

96 2.0 GHz 
Intel Xeon

64 2.0 
GHz Intel 
Xeon

128 2.0  
GHz Intel 
Xeon

96 2.0  
GHz Intel 
Xeon

96 2.0  
GHz Intel 
Xeon

Accelerator 
Memory

320 GB HBM + 
320 MB SRAM 

320 GB HBM 
+ 320 MB 
SRAM 

1376 GB 5507 GB 1.108 TB 320 GB  
HBM + 320 
MB SRAM 

640 GB  
HBM + 640 
MB SRAM 

Host Memory 12379 GB 96610 GB 25611 GB 25611 GB 25611 GB 680 GB 680 GB

Cost per hour $32.77 $28 $8 + cost of VM 
($1.35) = $9.35

$32 $64 $23.4712 $46.9413

play _ math 
time

Couldn’t  
get quota

1m  
47.854s

Too long to 
care

9m  
19.873s

Couldn’t  
get quota

1m  
54.273s

3m  
55.344s14

play _ image 
time

Couldn’t  
get quota

46m 0.339s Too long to 
care

broke the 
cluster

Couldn’t  
get quota 

48m  
43.917s

67m  
54.672s

play _ char  
time

Couldn’t  
get quota

9m 
 45.164s

Too long to 
care

broke the 
cluster

Couldn’t  
get quota

10m  
21.712s

21m 25.199s

EfficentDet 
network 
latency time

Couldn’t  
get quota

-15 0.074245587 
10000043

Couldn’t  
get quota

0.14675208 
45999985

0.133794982 
50000096

EfficentDet 
network 
latency FPS*

Couldn’t  
get quota

- 13.468813959 
988125

Couldn’t  
get quota

6.81421325 
445356

7.47412183 
4127769

EfficentDet 
end-to-end 
latency time

Couldn’t  
get quota

- 0.08260749 
860000374

Couldn’t  
get quota

0.08342655 
909999622

0.08533461 
209999586

EfficentDet 
end-to-end 
latency FPS

Couldn’t  
get quota

- 12.105438 
573344657

Couldn’t  
get quota

11.986590
490941696

11.718574
90754727

* Frames per second

TABLE 2: Benchmarks
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dip its toes into the water of building its own chips for its 
own use cases. Let’s take a look at Apple’s M1.

THE APPLE M1
Apple has created not only a CPU but also a GPU and a 
bunch of other accelerators making up the SoC (system 
on a chip) known as M1. In addition to the CPU and GPU, 
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1    https://aws.amazon.com/ec2/instance-types/
2    https://docs.microsoft.com/en-us/azure/virtual-machines/

nda100-v4-series  
3    https://cloud.google.com/tpu/docs/types-zones 
4   https://cloud.google.com/tpu/pricing#pod-pricing  
5   https://cloud.google.com/compute/docs/gpus  
6   128 GiB to GB
7    512 GiB to GB
8   1TiB to TB
9    1152 GiB to GB
10   900 GiB to GB
11    https://cloud.google.com/compute/docs/general-

purpose-machines 64 GB * 4
12   https://cloud.google.com/compute/gpus-pricing 

$2.933908 per GPU * 8
13   https://cloud.google.com/compute/gpus-pricing 

$2.933908 per GPU * 16
14   I think these are slower since we are doing more memory 

transfers across different hardware pieces and we didn’t 
have enough training data to make the new threads 
worth the cost of memory transfers for them.

15   Didn’t test but could be considered similar to GCP’s 8 
A100s.
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the M1 SoC includes an image processing unit used 
to speed up common tasks done by image processing 
applications; digital signal processor, which handles 
more mathematically intensive functions than a CPU (for 
example, decompressing music files); neural processing 
unit used in high-end smartphones to accelerate AI 
(artificial intelligence) tasks (for example, voice recognition 
and camera processing); video encoder and decoder to 
handle the power-efficient conversion of video files and 
formats; secure enclave for encryption, authentication, 
and security; and a unified memory system. Each of these 
components is designed for the workloads that most Mac 
users perform. By making its own chips, Apple does not 
need to rely on the general-purpose chips it was previously 
buying from Intel and can integrate its hardware fully into 
its software, making for a complete experience. 

As a matter of fact, Apple has now surpassed the 
capabilities of Intel’s fabrication plants (fabs). The M1 
uses TSMC’s 7nm process, which Intel has yet to catch 
up to (fabs are covered in depth later in this article). As 
described in my previous article, “Chipping away at Moore’s 
Law” [acm.org], the smaller the transistor, the less power 
is required for a chip to function. For Apple, this means 
better battery life for its devices and power savings for its 
desktops.

UNIFIED MEMORY SYSTEM
A huge gain in M1 performance over that of general-purpose 
chips comes from the unified memory system. This allows 
the CPU, GPU, and other processing units in the SoC to 
share the same data in memory. General-purpose chips 
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tend not to do this since they all use some different form of 
interconnect that does not allow for it. With unified memory, 
when the CPU needs to give data to the GPU, the GPU can 
take it from the same bits of memory; it does not need to be 
copied to the GPU’s memory first [eclecticlight.co]. 

Because RAM is directly embedded in the SoC, an 
upgrade to more memory is not possible  (though that hasn’t 
been possible for quite some time with Apple computers 
since previously RAM was soldered to the board itself).

RISC
The M1 is ARM-based, meaning it is a RISC (reduced 
instruction set computer) architecture. The Intel chips 
Apple used previously were x86, a CISC (complex 
instruction set computer) architecture. This switch is 
important to note for a few reasons. One question Apple 
had to answer was if, by switching architectures, it would 
make changes that broke the programs its user base runs. 
For this reason, Apple introduced an emulator known as 
Rosetta, which enables a Mac with M1 silicon to use apps 
built for a Mac with an Intel processor.

Switching from x86 to ARM was not Apple’s first rodeo 
in switching instruction set architectures. From 1984 
to 1994, Apple predominantly used Motorola’s 68x CISC 
series processors. In 1994, it switched to the PowerPC 
RISC series processors. In 2006, it moved to Intel’s x86 
processors, followed in 2020 with the switch to its own 
ARM RISC processors [chipsetc.com]. While Apple likely 
had the courage [theverge.com] to make the switch sans 
experience, it also had the experience to back it up.

RISC architectures have fewer instructions but are 
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more like Legos: They have all the building blocks for the 
complex instructions a CISC architecture provides, while 
also having the flexibility to build whatever the user wants. 
In a RISC-based system, since there are fewer instructions, 
more of them are required to do complex tasks; however, 
processing them can be more efficient. For a CISC-based 
architecture, it is harder to be as efficient because of the 
number of instructions and their complexity. (Intel started 
marketing its processors as RISC by adding a decoding 
stage to turn CISC instructions into RISC instructions 
[medium.com]. The advantages of RISC persist because of 
the fixed length; CISC still has to figure out the length of 
the instructions.) Using a RISC architecture leads to better 
power efficiency and performance.

One design detail of the M1 processor to point out is 
the large number of encoders and decoders. This can be 
accomplished only with a RISC-based architecture because 
of the fixed-length instructions. CISC-based architectures 
have variable-length instructions and lots of complex 
instructions. It is a bit of a meme that no one knows all 
the instructions available in x86 [twitter.com], but there 
are ways of discovering hidden instructions [github.com]. 
The fixed length of instructions means that RISC-based 
architectures require a simpler decode leading to less 
circuitry, heat, and power consumption.

The M1 takes advantage of OoOE (out-of-order 
execution) as a way to execute more instructions in 
parallel without exposing that capability as multiple 
threads. While you might be thinking, [yawn] “Intel and 
AMD do that as well,” there is a core difference with the M1 
chip. For OoOE to spread its wings and fly, a large buffer of 
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micro-operations is needed; then the hardware can more 
easily find instructions to run in parallel. Decoders convert 
the machine-code instructions into micro-ops to pass 
off to the instruction buffer. Intel and AMD processors 
typically have four decoders. M1 has eight decoders and 
an instruction buffer three times larger than the industry 
norm. This means the M1 processor can more easily find 
instructions to run in parallel.

Now you might be thinking, Why don’t AMD and Intel 
add more decoders? Because CISC-based architectures 
have variable-length instructions, it is nontrivial for the 
decoders to split up a stream of bytes into instructions 
because they have no idea where the next instruction 
starts. CISC decoders have to analyze each instruction 
to understand how long it is. AMD and Intel deal with this 
by brute force. They attempt to decode instructions at 
every possible starting point, making the decoder step too 
complex to add more decoders. 

It seems like a no-brainer for Apple to build its own 
processors in terms of user experience, economics, and 
performance. Not only has it made an efficient CPU, but all 
the other specialized chips included in the SoC are based 
on the workloads of Mac users. Apple can integrate all the 
specialized chips into its software and create nice user 
experiences for its customers. It has definitely blown Intel 
out of the water in making better chips for its users and is 
freed from the obligation of giving Intel a cut of its margins.

FOUNDRIES
If you are an Apple, Tesla, or other “fabless” company (one 
without its own fabrication plant) that has designed its 
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own chip, where do you go to have it manufactured? Well, 
TSMC, of course. TSMC is the trusted fab with advanced 
processes such as 3nm/5nm/7nm to make these chips. 
Even Intel uses TSMC instead of its own fabs for some of 
its most advanced chips. Apple, Tesla, Intel, and AMD must 
compete for capacity at TSMC. Samsung has processes for 
5nm and 7nm, but TSMC appears to outperform Samsung 
in yield, cost, and density [semiwiki.com], making TSMC the 
trusted fab among the big-name customers. Tesla does use 
Samsung for its FSD chip and TSMC for Dojo.

Intel has plans to make more advanced chips and even 
sell the capacity at its foundries to customers such as 
Apple, but history is not in its favor [theverge.com]. Intel is 
still trying to get the 7nm process up and running as TSMC 
works on 3nm. Customers like Apple aren’t interested in 
Intel’s 12nm or 14nm processes; they are looking for 3nm or 
smaller. Will Intel be able to catch up? 

It’s important to understand that the name of 
the process (5nm, 7nm, etc.) has become more of a 
marketing term than a description of the transistor size. 
Traditionally, naming came from the Leff (the minimum 
effective length of a transistor channel). When comparing 
processes, it is better to compare the density of the 
transistors. For example, Intel claims its unproven 7nm 
process is comparable in density to TSMC’s 5nm process 
[hardwaretimes.com], should Intel get the process up and 
running. This might help its odds of catching up.

Interestingly, Intel CEO Pat Gelsinger stated during 
an investor briefing [intc.com] on March 23, 2021, that 
the company foresees Apple as a future customer of 
its foundries, while simultaneously running a series of 
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advertisements that were anti-Apple [youtube.com]. 
Ironically, the ads poke at features of PCs versus Apple 
computers that have nothing to do with the underlying 
processors, leading to some funny YouTube comments. 
Overall public opinion on the ads was not in Intel’s favor 
and might have actually given AMD a marketing boost. 

Suppose, however, that the global shortage of 
processors and fab capacity continues and Intel manages 
to catch up to TSMC. In that case, lots of customers would 
undoubtedly be relieved that there is more than one fab that 
can be trusted to manufacture advanced chips. Intel has a 
long way to go to catch up, however, while TSMC is investing 
$100 billion in its own expansion [bloomberg.com].

EXTREME ULTRAVIOLET LITHOGRAPHY
EUV (extreme ultraviolet) lithography is used to etch the 
tiniest nanoscopic features into silicon wafers with light. One 
of the early limitations of EUV lithography was that pellicles 
were not ready. A pellicle is a thin, transparent membrane 
that protects an expensive photomask from particles falling 
on it during the chip production flow. If a particle were to 
fall on the photomask, the scanner could print repeating 
defects on the wafer. This would have a catastrophic impact 
on yield, not to mention that EUV photomasks are priced 
around $300,000 [semiengineering.com]. (ASML makes 
the $150 million EUV machines that power the leading-edge 
manufacturing of chips. Intel, Samsung, and TSMC have all 
invested in the company.)

As a result of these limitations, Intel decided to walk 
away from EUV and try to develop in a different direction. 
TSMC and Samsung moved forward with EUV despite the 
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lack of pellicles and came up with their own solutions for 
the problem. TSMC also has an advantage in that Apple, 
Qualcomm, and AMD’s 7nm designs have a relatively 
small die size. Photomask dimensions can be around 
20 times those of the resulting EUV die; however, the 
masks for those customers’ ICs (integrated circuits) are 
still relatively small. Unfortunately, Intel is still on large 
monolithic dies, so an attempt to use any pellicle-less EUV 
solution would likely end in terrible yields. Intel had to 
either change its die size, requiring massive architecture 
changes, or wait for pellicles. 

This is why Intel got left behind TSMC and Samsung in 
terms of advanced processes and EUV. Samsung was the 
first to get EUV into the production of its 7nm process 
[semiwiki.com], with TSMC following soon after. Samsung 
seems to have suffered from yield problems [semiwiki.
com], perhaps as a result of trying to do EUV without 
pellicles. In July 2020, TSMC had manufactured one billion 
7nm chips using EUV [tsmc.com]. It wasn’t until March 2021 
that pellicles were ready, finally allowing Intel to consider 
using EUV [semiengineering.com].

THE FUTURE
Not only are general-purpose chips getting better, but 
also multiple companies that previously were not in the 
business of making chips are now making their own. Doing 
so seems to pay dividends in terms of user experience, 
economics, and performance. It will be interesting to 
see who joins this club next. Long live the engineers who 
are so serious about software that they make their own 
hardware. Technology is better off because of it.
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