
acmqueue |march-april 2021 5

C
omputer-aided design (CAD) has been around since
the 1950s. The first graphical CAD program, called
Sketchpad, came out of MIT [designworldonline.
com]. Since then, CAD has become essential
to designing and manufacturing hardware

products. Today, there are multiple types of CAD. This
column focuses on mechanical CAD, used for mechanical
engineering.

Digging into the history of computer graphics reveals
some interesting connections between the most ambitious
and notorious engineers. Ivan Sutherland, who won the
Turing Award for Sketchpad in 1988, had Edwin Catmull as
a student. Catmull and Pat Hanrahan won the Turing award
for their contributions to computer graphics in 2019. This
included their work at Pixar building RenderMan [pixar.
com], which was licensed to other filmmakers. This led
to innovations in hardware, software, and GPUs. Without
these innovators, there would be no mechanical CAD, nor
would animated films be as sophisticated as they are today.
There wouldn’t even be GPUs.

Modeling geometries has evolved greatly over time.
Solids were first modeled as wireframes by representing
the object by its edges, line curves, and vertices. This
evolved into surface representation using faces, surfaces,
edges, and vertices. Surface representation is valuable
in robot path planning as well. Wireframe and surface

A New Era for
Mechanical CAD

Time to move
forward from
decades-old
designJESSIE FRAZELLE

1 of 12 TEXT
ONLY COMMIT TO

memory

http://images.designworldonline.com.s3.amazonaws.com/CADhistory/Sketchpad_A_Man-Machine_Graphical_Communication_System_Jan63.pdf
http://images.designworldonline.com.s3.amazonaws.com/CADhistory/Sketchpad_A_Man-Machine_Graphical_Communication_System_Jan63.pdf
https://renderman.pixar.com/
https://renderman.pixar.com/

acmqueue |march-april 2021 6

representation contains only geometrical data. Today,
modeling includes topological information to describe how
the object is bounded and connected, and to describe its
neighborhood. (A neighborhood of a point consists of a set
of points containing that point where one can move some
distance in any direction away from that point without
leaving the set.)

OpenCascade, Parasolid, and ACIS are all boundary-
representation (B-rep) kernels. A B-rep model is composed
of geometry and topology information. The topology
information differs depending on the program used. B-rep
file formats include STEP (Standard for the Exchange
of Product Model Data), IGES (Initial Graphics Exchange
Specification), NX’s prt, Solid Edge’s par and asm, Creo’s prt
and asm, SolidWorks’ sldprt and sldasm, Inventor’s ipt and
iam, and AutoCAD’s dwg.

Visual representation (vis-rep) models tend to be much
smaller in data size than B-rep models. This is because they
do not contain as much structural or product management
information. Vis-rep models are approximations of
geometry and are composed of a mass of flat polygons.
Vis-rep file formats include obj, STL, 3D XML, 3D PDF,
COLLADA, and PLY.

CAD programs tend to use B-rep models, while
animation, game development, augmented reality, and
virtual reality tend to use vis-rep models. However, the two
are interchanged frequently. For example, if you were using
a B-rep model for manufacturing but wanted to load it into
Apple’s ARKit for some animations, you would first convert
it to COLLADA, a vis-rep file format. The file should already
be a bit smaller from dropping all the CAD data, but if you

2 of 12

ICOMMIT TO
memory

acmqueue |march-april 2021 7

wanted to make it even smaller, you could tweak the polygon
counts on each of the meshes for the various parts.

The tools used to build with today are supported on the
shoulders of giants, but a lot could be done to make them
even better. At some point, mechanical CAD lost some of
its roots of innovation. Let’s dive into a few of the problems
with the CAD programs that exist today and see how to
make them better.

SINGLE THREADED
Since most CAD kernels are built on cores from the ’80s,
they are not meant for modern systems. Even the latest
CPU or GPU won’t do much to help the performance since
most of these programs are single threaded, or have
single-threaded aspects, and have no awareness of a GPU.
OpenSCAD and everything built on CGAL (Computational
Geometry Algorithms Library) are single threaded. Sure,
some of these kernels have been updated since the ’80s,
but their roots are still tied to their predecessors. (I am
sure there is a lot to learn from these codebases, but as
someone who has seen many old codebases, I know this
can lead down a dangerous path.)

This does not mean that all CAD kernels are entirely
single threaded. Parasolid is multithreaded, but that still
means if you are importing or exporting to a file format
other than Parasolid, you might have just switched back
to a single-threaded process. Another example of a
multithreaded kernel is ImplicitCAD [implicitcad.org],
which is written in Haskell.

One problem with making a whole CAD program
multithreaded is the different file formats. For example,

3 of 12

I

I
am sure there
is a lot to learn
from these
 codebases,
but as some-

one who has
seen many old
codebases,
I know this can
lead down a
dangerous path.

COMMIT TO
memory

https://www.implicitcad.org/

acmqueue |march-april 2021 8

a STEP file, whose format dates back to the ’80s [iso.
org], pretty much mandates the need for a single-
threaded process. (Additionally, a STEP file cannot be
read sequentially; it must be loaded into memory and then
resolved.) Most parametric CAD operations are single
threaded; however, the open-source project SolveSpace
[solvespace.com], which uses NURBS (nonuniform rational
basis splines), has some parallel operations.

DUPLICATION
In software development, a pointer is used to get the
contents of a memory address. This allows users to
reference that same content over and over again without
the expense of copying the content itself.

Some products built using CAD may never duplicate
a part of their model—lucky for them! For people who do
have multiple similar parts in their CAD designs, most CAD
programs are creating very expensive copies of these parts.

For example, imagine a model of a server rack. The
default method of copying a part (using copy and paste)
in SolidWorks, as well as many other industrywide CAD
programs, is to copy the entire contents of a child model
to a new model. So, if you have 32 sleds in the server rack
and use the default copy method in SolidWorks, you have
32 of the exact same model in individual copies. This is
very expensive. Each sled has many more models inside,
and then those models have child models as well. This
exponentially increases the workload on the kernel and on
your program to load your model in the first place, since
the program does not know these are all the same thing.

Taking a lesson from software development, what you

4 of 12

ICOMMIT TO
memory

https://www.iso.org/committee/54110.html
https://www.iso.org/committee/54110.html
https://solvespace.com/index.pl

acmqueue |march-april 2021 9

I

really want is a form of pointer to the model. In the CAD
world, these are called instances. Then you can have one
copy of the model stored, and all the other instances are
actually just references to the original copy. This also
saves the user a bunch of time. Imagine having to update
parts of models in 32 different locations when a part in a
sled changes. A wise person once said, “The definition of
insanity is doing the same thing over and over again but
expecting different results.”

SolidWorks does offer another option that is more in
line with how pointers operate, but since this is not the
default, most users might not even realize there is a better
way. The default path should lead to the least amount of
pain. Instead of having two methods for copying, products
should have just one. They should make the default method
act more like a pointer (or instance) until the geometry,
surfaces, or topology of the copy (not the main) has
changed. In this case the user should be warned that this
will now act like a unique part aside from the main copy.
Or the user might have mistakenly meant to apply those
changes to all the copies, in which case the changes should
be applied to the main copy.

There is another huge problem with this. Each CAD
program has its own way of implementing and referencing
instances. If you export your design from one CAD program
to another, you will likely still have 32 individual sleds
rather than one sled and 31 references to the original
with only the xyz coordinates changed. Some programs
offer ways to import instances, but they all rely on the file
format being imported and whether they have the support
for that format.

5 of 12COMMIT TO
memory

acmqueue |march-april 2021 10

Even if you are using instances, you are still at the mercy
of the single-threaded kernel, and none of the copies are
likely to render in parallel.

VERSION CONTROL
For software teams that are accustomed to using git,
being able to diff, fix merge conflicts, and work as a team
in parallel on the same file is a huge time saver. A number
of startups are working to bring this ability to mechanical
CAD.

Instead of reinventing version control for CAD, those
who use git today want to continue to use git and not have
to add another tool to their workflow. Today there is no
way to push a CAD file to a git repo, have several people
modify the file, and resolve merge conflicts. (Well, maybe
it could be done, but it would be the opposite of fun.)
For all the startups working to solve version control for
mechanical CAD, this is why they had to reinvent the wheel.

In a world where a kernel can fully utilize a modern
CPU and GPU, can you not also use a file format that is
human-readable and would allow for resolving merge
conflicts? When you ask, “What is human-readable and
works well with git?” the first answer that comes to mind is
a programming language.

The other great win from using a programming
language is this: Even if you don’t use or want to use git,
there are already many different options for version
control of human-readable files. Additionally, integrations
with GitHub and other version-control tools could be
extended with wasm (WebAssembly) support so that diffs
could be visualized as renders as well.

6 of 12

I

I
nstead of
reinventing
version
control for
CAD, those

who use git
today want to
continue to use
git and not have
to add another
tool to their
workflow.

COMMIT TO
memory

acmqueue |march-april 2021 11

PROGRAMMABLE
Think back to the example of the rack of servers. If part
of the rack contained complex math that you were
calculating in a program such as Mathematica, you would
have to reevaluate the math continuously in another
program and update it in your model. If, instead, you could
program in the CAD product itself, then you could do all
your calculations in one place and the model would update
if anything in the equations changed.

Each sled in the rack of servers has network cables
that connect to the back of the sled. Using the GUI, you
would have difficulty making these align perfectly with
the connector on the sled. Someone would have to sit
with the model for an hour or so just tweaking each cable
to be perfectly aligned—a huge waste of time. Instead, if
you could program the alignment of the cables, you could
ensure each was perfectly aligned with the connector.

The need for programming becomes even more
acute if you want to do mesh or topology optimizations.
Unfortunately, most optimizations are implemented
through GUI click interfaces, and given their complexity
to define, can often be more trouble than they are worth.
Today, some programs allow for scripting, but their APIs
are COM (Component Object Model) based and, as you can
imagine, built in the ’90s. It’s great they even offer this,
however. (Thank you, AutoCAD, for being the first CAD
command-line interface I ever used.)

For the modern world, it would be great to generate
SDK clients for the CAD program in every language, much
the way API clients are generated. This would allow anyone
to program in any language. It would lower the barrier to

7 of 12

ICOMMIT TO
memory

acmqueue |march-april 2021 12

entry since learning a new language would not be required.
This would allow for complex math to be done in the CAD
program itself rather than using Mathematica, MATLAB, or
Wolfram Alpha.

A few scriptable CAD programs exist today and are
paving the way for this transition: ImplicitCAD [implicitcad.
org], libfive Studio [libfive.com], OpenSCAD [openscad.
org], CadQuery [github.com], FreeCAD [freecadweb.
org], and ruckus [github.com]. Blender [blender.org] has
a great console interface. Three.js [threejs.org], while
not CAD oriented, is also another great example of a
3D programming language. Jonathan Blow’s Jai [oxide.
computer] is for writing systems-level code and a great
example of creating a language thinking heavily about
performance. (This is not yet open to the public, but he has
talked about it extensively.)

Most of the mechanical engineering community is tied
to the GUI, so generating code from GUI interactions
would be necessary. This is quite similar to an HTML point-
and-click GUI that generates code on the back end. This
allows people who want to script to script, and others who
want to click can click. Both worlds can be happy—code
on the left side, render on the right, just like a markdown
editor.

If there is an SDK client for the CAD program and
underlying kernel, you can imagine a rich ecosystem of
plug-ins and tools emerging, much like the ecosystem that
surrounds VSCode, Vim, and Emacs. Most CAD editors
used for products are closed off and don’t allow for this
type of community-based development and sharing.
Plug-ins could be written for any use case: for example,

8 of 12

ICOMMIT TO
memory

https://www.implicitcad.org/
https://www.implicitcad.org/
https://libfive.com/
https://www.openscad.org/
https://www.openscad.org/
https://github.com/CadQuery/cadquery
https://www.freecadweb.org/
https://www.freecadweb.org/
https://github.com/cbiffle/ruckus
https://www.blender.org/
https://threejs.org/
https://oxide.computer/podcast/on-the-metal-9-jonathan-blow/
https://oxide.computer/podcast/on-the-metal-9-jonathan-blow/

acmqueue |march-april 2021 13

mesh/topology optimizations and supply-chain system
integrations. This includes the functionality for finding
parts, creating BOMs (bills of materials), and computing
lead times for parts of the model. Today, this is usually
done in separate programs or even spreadsheets.

Plug-ins that support a command+P function would
be welcome. In most programs, when you want to print
something, you hit command+P. (Creo probably has the
closest thing to this functionality but lacks an open
ecosystem.) For mechanical CAD, when you want to print
your model the underlying program should discover all
the 3D printers and machines on the local network (or
plugged directly into your machine) and send the parts of
your model that are compatible with each machine to be
printed. This could even be taken a step further—in a fully
automated factory with robots, the program should set up
and start the assembly for the model and all the parts.

Speaking of 3D printing, let’s look at the STL file
format. This format was defined in 1987, and its namesake
comes from stereolithography, the first method of
additive manufacturing. STL files represent geometry
in a series of triangular surfaces. Since STL is a vis-rep
format, it does not hold any data about internal structure,
color, texture, or any other CAD data that a B-rep format
would contain. Modern 3D printers have innovated past
the simplicity of the STL format. For example, to print
a full-color model, users need a VRML (Virtual Reality
Modeling Language) file, or an STL file associated with
textures in order for the printer to add color and texture
to the object. Plug-ins can ensure that the printer gets
the correct data for the specific model to be printed,

I
9 of 12COMMIT TO

memory

acmqueue |march-april 2021 14

without the pain of conversion and ensuring that no
materials or textures are dropped.

TESTING
The test flow of CAD models usually consists of running
simulations. Let’s use airflow and thermals as examples.

In the software world, after pushing your code
updates, typically a CI (continuous integration) is run on
the changes, letting you and your teammates know if you
broke anything or if your code is safe to merge. CAD should
work the same way. If you make changes to a model, your
simulations should run in a CI to let your teammates know
if your code is safe to merge. Most of these simulations are
compute intensive, so being able to offload the simulations
to the cloud or remote servers would also be ideal.

Much as VSCode and other editors have nice plug-ins
for offloading tests to other computers, a modern CAD
program should have the same.

USER EXPERIENCE AND DESIGN
After trying many different industry CAD programs, I have
found that most have one characteristic in common: a user
interface that looks like it is from the ’90s. It is a bit ironic
that a tool used for mechanical design has not considered
the design and experience of its user interface. Most CAD
programs are in need of a makeover, though there are a
couple of outliers that do interface design well: Shapr3D
[shapr3d.com], an iPad app, has a great design and intuitive
interface; SketchUp [sketchup.com] has an intuitive and
beautiful design.

Additionally, CAD applications need to be native on

I
10 of 12COMMIT TO

memory

https://www.shapr3d.com/
https://www.sketchup.com/products/sketchup-pro

acmqueue |march-april 2021 15

MacOS, Linux, and Windows. Native applications built for
their specific platform perform better than ones built with
Electron and the like. (That being said, VSCode is a nice
Electron app.) Especially for a program as graphics heavy
as CAD, using the underlying operating-system graphics
mechanisms helps achieve the best performance possible.
Today, a CAD program can be used only on the operating
system that is supported by that specific program.
Additionally, most use archaic GUI frameworks that truly
show their age.

Onshape [onshape.com] changed the mold by offering
a SaaS (software-as-a-service) CAD program. This allows
expensive compute processes to be easily offloaded to the
cloud. This was a truly revolutionary idea, but it limits the
user’s ability to work offline. In contrast, native apps can
work offline but also have the ability to offload workloads
to the cloud when connected to the network.

If CAD programs can focus on an intuitive design
without falling into a trap of complexity, both new users
and professionals should be productive. Just as I would
use Vim for side projects as well as professional jobs, I
would expect my CAD tool to work just as well for building
a toy for fun as it would for a complex project. A lot of
this capability comes down to the interface design and
extensibility through plug-ins.

A BETTER TOMORROW
Developers of new CAD programs need to think through
each of these aspects. No existing CAD program has
solved all of these problems.

The world owes so much of the amazing innovation

I
11 of 12COMMIT TO

memory

https://www.onshape.com/en/

acmqueue |march-april 2021 16

of computer graphics to brilliant people such as Ivan
Sutherland, Pat Hanrahan, Ed Catmull, John Carmack, and
many others. I can only hope some truly revolutionary
changes are headed to the world of computer-aided design
in the same way that computer graphics pioneers paved
the way for rendering, animations, and virtual reality.

The hardware industry is desperate for a modern way
to do mechanical design. A new CAD program created
for the modern world would lower the barrier to building
hardware, decrease the time of development, and usher in
a new era of building.

Jessie Frazelle is the cofounder and chief product officer of
the Oxide Computer Company. Before that, she worked on
various parts of Linux, including containers, as well as the Go
programming language.
Copyright © 2021 held by owner/author. Publication rights licensed to ACM.

I
12 of 12

CONTENTS2

COMMIT TO
memory

acmqueue |march-april 2021 17

COMMIT TO
memory

